ppn=12, cpp=2, gpu_set="0,1,2,3", pmem=5000, project="rpp-bengioy", wall_time="71hours", cleanup_time="5mins", slack_time="5mins", n_repeats=2, copy_locally=True, config=dict(max_steps=120000, patience=0, curriculum=[dict()])) durations = dict( long=copy_update(run_kwargs), short=dict( wall_time="180mins", gpu_set="0", ppn=4, n_repeats=4, distributions=None, config=dict(max_steps=3000, render_step=500, eval_step=100, display_step=100, stage_steps=600, curriculum=[dict()]), ), test_load=dict( wall_time="180mins",
run_kwargs = dict( max_hosts=1, ppn=4, cpp=4, gpu_set="0,1", pmem=5000, project="rpp-bengioy", wall_time="96hours", cleanup_time="5mins", slack_time="5mins", n_repeats=4, ) durations = dict( long=copy_update(run_kwargs), restart10=copy_update( run_kwargs, wall_time="75hours", cpp=4, pmem=5000, ppn=1, n_repeats=1, gpu_set="0", config=dict( seed=100, restart_steps="1:120000", experiment_restart_path= "/scratch/e2crawfo/dps_data/parallel_experiments_run/aaai_2020_silot/shapes/run/run_env=big-shapes_max-shapes=10_alg=shapes-silot_duration=long_2019_07_30_16_55_21_seed=0/experiments", prepare_func=silot_shapes_restart_prepare_func, ),
run_kwargs = dict(max_hosts=2, ppn=8, cpp=2, gpu_set="0,1,2,3", pmem=10000, project="rpp-bengioy", wall_time="71hours", cleanup_time="5mins", slack_time="5mins", n_repeats=1, copy_locally=True, config=dict(max_steps=200000, render_step=1000000)) durations = dict( long=copy_update(run_kwargs), medium=copy_update( run_kwargs, wall_time="6hours", config=dict(stage_steps=3000, max_steps=12000), ), short=dict( wall_time="180mins", gpu_set="0", ppn=4, n_repeats=4, distributions=None, config=dict(max_steps=3000, render_step=500, eval_step=100, display_step=100,
gpu_set="0", wall_time="6hours", n_repeats=1, distributions=None, config=dict(do_train=False, n_train=32, n_val=1008, get_updater=DummyUpdater, render_hook=None, curriculum=[ dict(min_shapes=i, max_shapes=i) for i in range(1, 36) ])), ) durations['long_restart'] = copy_update(durations['long'], ppn=1, gpu_set="0") config = basic_config.copy() config.update(env_configs['big_shapes']) config.update(alg_configs['shapes_silot']) config.batch_size = 8 config.n_prop_objects = 36 config.update(max_shapes=args.max_shapes, small=args.is_small) run_experiment("shapes_silot", config, "silot on shapes.", name_variables="max_shapes,small", durations=durations)
{'cc_threshold': 0.8236294388771057, 'cosine_threshold': 0.9616384506225586}, {'cc_threshold': 0.8236294388771057, 'cosine_threshold': 0.9616384506225586} ], } alg_configs['shapes_baseline_test'] = alg_configs['shapes_baseline'].copy( do_train=False, cc_threshold=None, cosine_threshold=None, ) alg_configs['shapes_baseline_AP'] = alg_configs['shapes_baseline_test'].copy( curriculum=[ copy_update(v, min_shapes=i, max_shapes=i) for i, v in zip(shapes_baseline_n_shapes, shapes_baseline_values['AP'])] ) alg_configs['shapes_baseline_count_1norm'] = alg_configs['shapes_baseline_test'].copy( curriculum=[ copy_update(v, min_shapes=i, max_shapes=i) for i, v in zip(shapes_baseline_n_shapes, shapes_baseline_values['count_1norm'])] ) alg_configs['shapes_baseline_mota'] = alg_configs['shapes_baseline_test'].copy( curriculum=[ copy_update(v, min_shapes=i, max_shapes=i) for i, v in zip(shapes_baseline_n_shapes, shapes_baseline_values['MOT:mota'])] )