예제 #1
0
                  ppn=12,
                  cpp=2,
                  gpu_set="0,1,2,3",
                  pmem=5000,
                  project="rpp-bengioy",
                  wall_time="71hours",
                  cleanup_time="5mins",
                  slack_time="5mins",
                  n_repeats=2,
                  copy_locally=True,
                  config=dict(max_steps=120000,
                              patience=0,
                              curriculum=[dict()]))

durations = dict(
    long=copy_update(run_kwargs),
    short=dict(
        wall_time="180mins",
        gpu_set="0",
        ppn=4,
        n_repeats=4,
        distributions=None,
        config=dict(max_steps=3000,
                    render_step=500,
                    eval_step=100,
                    display_step=100,
                    stage_steps=600,
                    curriculum=[dict()]),
    ),
    test_load=dict(
        wall_time="180mins",
예제 #2
0
run_kwargs = dict(
    max_hosts=1,
    ppn=4,
    cpp=4,
    gpu_set="0,1",
    pmem=5000,
    project="rpp-bengioy",
    wall_time="96hours",
    cleanup_time="5mins",
    slack_time="5mins",
    n_repeats=4,
)

durations = dict(
    long=copy_update(run_kwargs),
    restart10=copy_update(
        run_kwargs,
        wall_time="75hours",
        cpp=4,
        pmem=5000,
        ppn=1,
        n_repeats=1,
        gpu_set="0",
        config=dict(
            seed=100,
            restart_steps="1:120000",
            experiment_restart_path=
            "/scratch/e2crawfo/dps_data/parallel_experiments_run/aaai_2020_silot/shapes/run/run_env=big-shapes_max-shapes=10_alg=shapes-silot_duration=long_2019_07_30_16_55_21_seed=0/experiments",
            prepare_func=silot_shapes_restart_prepare_func,
        ),
예제 #3
0
run_kwargs = dict(max_hosts=2,
                  ppn=8,
                  cpp=2,
                  gpu_set="0,1,2,3",
                  pmem=10000,
                  project="rpp-bengioy",
                  wall_time="71hours",
                  cleanup_time="5mins",
                  slack_time="5mins",
                  n_repeats=1,
                  copy_locally=True,
                  config=dict(max_steps=200000, render_step=1000000))

durations = dict(
    long=copy_update(run_kwargs),
    medium=copy_update(
        run_kwargs,
        wall_time="6hours",
        config=dict(stage_steps=3000, max_steps=12000),
    ),
    short=dict(
        wall_time="180mins",
        gpu_set="0",
        ppn=4,
        n_repeats=4,
        distributions=None,
        config=dict(max_steps=3000,
                    render_step=500,
                    eval_step=100,
                    display_step=100,
예제 #4
0
               gpu_set="0",
               wall_time="6hours",
               n_repeats=1,
               distributions=None,
               config=dict(do_train=False,
                           n_train=32,
                           n_val=1008,
                           get_updater=DummyUpdater,
                           render_hook=None,
                           curriculum=[
                               dict(min_shapes=i, max_shapes=i)
                               for i in range(1, 36)
                           ])),
)

durations['long_restart'] = copy_update(durations['long'], ppn=1, gpu_set="0")

config = basic_config.copy()
config.update(env_configs['big_shapes'])
config.update(alg_configs['shapes_silot'])

config.batch_size = 8
config.n_prop_objects = 36

config.update(max_shapes=args.max_shapes, small=args.is_small)

run_experiment("shapes_silot",
               config,
               "silot on shapes.",
               name_variables="max_shapes,small",
               durations=durations)
예제 #5
0
                    {'cc_threshold': 0.8236294388771057,
                     'cosine_threshold': 0.9616384506225586},
                    {'cc_threshold': 0.8236294388771057,
                     'cosine_threshold': 0.9616384506225586}
    ],
}

alg_configs['shapes_baseline_test'] = alg_configs['shapes_baseline'].copy(
    do_train=False,
    cc_threshold=None,
    cosine_threshold=None,
)

alg_configs['shapes_baseline_AP'] = alg_configs['shapes_baseline_test'].copy(
    curriculum=[
        copy_update(v, min_shapes=i, max_shapes=i)
        for i, v in zip(shapes_baseline_n_shapes, shapes_baseline_values['AP'])]
)

alg_configs['shapes_baseline_count_1norm'] = alg_configs['shapes_baseline_test'].copy(
    curriculum=[
        copy_update(v, min_shapes=i, max_shapes=i)
        for i, v in zip(shapes_baseline_n_shapes, shapes_baseline_values['count_1norm'])]
)

alg_configs['shapes_baseline_mota'] = alg_configs['shapes_baseline_test'].copy(
    curriculum=[
        copy_update(v, min_shapes=i, max_shapes=i)
        for i, v in zip(shapes_baseline_n_shapes, shapes_baseline_values['MOT:mota'])]
)