def test_no_xc(atomzs, dist, restricted): # check if xc == None produces the same result as "0*lda" with xt.enable_debug(): poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol1 = Mol((atomzs, poss), basis="3-21G", dtype=dtype) qc1 = KS(mol1, xc="0*lda_x", restricted=restricted).run() ene1 = qc1.energy() mol2 = Mol((atomzs, poss), basis="3-21G", dtype=dtype) qc2 = KS(mol2, xc=None, restricted=restricted).run() ene2 = qc2.energy() assert torch.allclose(ene1, ene2)
def test_uks_energy_same_as_rks(xc, atomzs, dist, energy_true): # test to see if uks energy gets the same energy as rks for non-polarized systems poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype) qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true)
def test_rks_energy(xc, atomzs, dist, energy_true, grid): # test to see if the energy calculated by DQC agrees with PySCF # for this test only we test for different types of grids to see if any error is raised poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid) qc = KS(mol, xc=xc, restricted=True).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true)
def test_rks_energy_df(xc, atomzs, dist, energy_true, grid): # test to see if the energy calculated by DQC agrees with PySCF using # density fitting poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid) mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit") qc = KS(mol, xc=xc, restricted=True).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true)
def get_energy(atomzs): poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) mol = Mol((atomzs, poss), basis="6-311++G**", spin=0, dtype=dtype, grid="sg3") qc = KS(mol, xc="lda_x", restricted=True).run() ene = qc.energy() - mol.get_nuclei_energy() return ene
def get_energy(vext_params): vext = rgrid_norm * rgrid_norm * vext_params # (ngrid,) mol = Mol((atomzs, poss), basis="3-21G", dtype=dtype, grid=3, vext=vext) qc = KS(mol, xc=xc, restricted=True).run() ene = qc.energy() return ene
def test_uks_energy_atoms(xc, atomz, spin, energy_true): # check the energy of atoms with non-0 spins poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype) mol = Mol(([atomz], poss), basis="6-311++G**", grid=4, dtype=dtype, spin=spin) qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true, atol=0.0, rtol=1e-6)
def test_uks_energy_mols(xc, atomzs, dist, spin, energy_true): # check the energy of molecules with non-0 spins poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol = Mol((atomzs, poss), basis="6-311++G**", grid=3, dtype=dtype, spin=spin) qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-6, atol=0.0)
def test_uks_energy_mols_df(xc, atomzs, dist, spin, energy_true): # check the energy of molecules with non-0 spins with density fitting poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol = Mol((atomzs, poss), basis="6-311++G**", grid=3, dtype=dtype, spin=spin) mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit") qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-6, atol=0.0)
def test_rks_energy(xc, atomzs, dist, energy_true, grid, variational): # test to see if the energy calculated by DQC agrees with PySCF # for this test only we test for different types of grids to see if any error is raised if xc == "mgga_x_scan": if atomzs == [1, 1]: pytest.xfail("Psi4 and PySCF don't converge") poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid) qc = KS(mol, xc=xc, restricted=True, variational=variational).run(fwd_options={"verbose": True}) ene = qc.energy() # < 1 kcal/mol assert torch.allclose(ene, ene * 0 + energy_true, atol=1.3e-3, rtol=0)
def get_energy(alphas, coeffs): basis = { 'H': [ CGTOBasis(angmom=0, alphas=alphas, coeffs=coeffs, normalized=True) ] } moldesc = "H 0.0000 0.0000 0.0000; H 0.0000 0.0000 1.1163" mol = Mol(moldesc, basis=basis, dtype=dtype, grid=3) # qc = HF(mol, restricted=True).run() qc = KS(mol, xc="lda_x", restricted=True).run() return qc.energy()
def atest_pbc_rks_energy(xc, atomzs, spin, alattice, energy_true, grid): # test to see if the energy calculated by DQC agrees with PySCF # for this test only we test for different types of grids to see if any error is raised alattice = torch.as_tensor(alattice, dtype=dtype) poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype) mol = Sol((atomzs, poss), basis="3-21G", spin=spin, alattice=alattice, dtype=dtype, grid=grid) mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit") qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true)
def _test_ks_mols(): # setting up xc a = torch.tensor(-0.7385587663820223, dtype=dtype, requires_grad=True) p = torch.tensor(1.3333333333333333, dtype=dtype, requires_grad=True) xc = PseudoLDA(a=a, p=p) poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist poss = poss.requires_grad_() mol = Mol((atomzs, poss), basis="6-311++G**", grid=3, dtype=dtype, spin=spin) qc = KS(mol, xc=xc).run() ene = qc.energy() # see if grad and backward create memleak grads = torch.autograd.grad(ene, (poss, a, p), create_graph=True) ene.backward() # no create_graph here because of known pytorch's leak
def test_uks_energy_atoms(xc, atomz, spin, energy_true): # check the energy of atoms with non-0 spins if xc == "mgga_x_scan": if atomz == 3: pytest.xfail("No benchmark converges") poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype) mol = Mol(([atomz], poss), basis="6-311++G**", grid="sg3", dtype=dtype, spin=spin) qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() # < 1 kcal/mol assert torch.allclose(ene, ene * 0 + energy_true, atol=1e-3, rtol=0)
def test_pbc_rks_energy(xc, atomzs, spin, alattice, energy_true, grid): # test to see if the energy calculated by DQC agrees with PySCF # for this test only we test for different types of grids to see if any error is raised alattice = torch.as_tensor(alattice, dtype=dtype) poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype) mol = Sol((atomzs, poss), basis="3-21G", spin=spin, alattice=alattice, dtype=dtype, grid=grid) mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit") qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() energy_true = ene * 0 + energy_true # rtol is a bit too high. Investigation indicates that this might be due to # the difference in grid (i.e. changing from sg2 to sg3 changes the values), # not from the eta of the compensating charge (i.e. changing it does not # change the value) # TODO: make a better grid assert torch.allclose(ene, energy_true, rtol=1e-3)
def test_rks_energy_df(xc, atomzs, dist, energy_true, grid): # test to see if the energy calculated by DQC agrees with PySCF using # density fitting if xc == "mgga_x_scan": if atomzs == [1, 1]: pytest.xfail("Psi4 and PySCF don't converge") for lowmem in [False, True]: # simulating low memory condition if lowmem: init_value = config.THRESHOLD_MEMORY config.THRESHOLD_MEMORY = 1000000 # 1 MB poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid) mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit") qc = KS(mol, xc=xc, restricted=True).run() ene = qc.energy() # error to be < 1 kcal/mol assert torch.allclose(ene, ene * 0 + energy_true, atol=1.1e-3, rtol=0) if lowmem: # restore the value config.THRESHOLD_MEMORY = init_value
def get_energy(vext_params): vext = rgrid_norm * rgrid_norm * vext_params # (ngrid,) qc = KS(mol, xc=xc, vext=vext, restricted=True).run() ene = qc.energy() return ene
def get_energy(*params): xc = xccls(*params) qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() return ene
def run_ks_forward(moldesc, basis="6-311++G**", xc="lda_x", grid="sg3"): # run a simple KS energy calculation mol = Mol(moldesc, basis=basis, grid=grid) qc = KS(mol, xc=xc).run() ene = qc.energy() return ene
mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit") qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true) if __name__ == "__main__": import time xc = "lda_x" basis = "3-21G" atomzs = [3] spin = 1 alattice = np.array([[1., 1., -1.], [-1., 1., 1.], [1., -1., 1.] ]) * 0.5 * 6.6329387300636 grid = "sg2" # test to see if the energy calculated by DQC agrees with PySCF # for this test only we test for different types of grids to see if any error is raised alattice = torch.as_tensor(alattice, dtype=dtype) poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype) mol = Sol((atomzs, poss), basis="3-21G", spin=spin, alattice=alattice, dtype=dtype, grid=grid) mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit") qc = KS(mol, xc=xc, restricted=False).run() ene = qc.energy() assert torch.allclose(ene, ene * 0 + energy_true)
def get_energy(efield): mol = Mol(moldesc, basis="3-21G", dtype=dtype, efield=efield) qc = KS(mol, xc="lda_x").run() ene = qc.energy() return ene
def get_energy(dist_tensor): poss_tensor = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist_tensor mol = Mol((atomzs, poss_tensor), basis="3-21G", dtype=dtype, grid=3) qc = KS(mol, xc=xc, restricted=True).run(bck_options=bck_options) return qc.energy()