def integrate_spectra(obj, **kwargs): """ This function takes a set of spectra and calculates the integration for the primary axis. If the integration range for a spectrum cannot be found, an error report will be generated with the following information: Range not found: pixel ID, start bin, end bin, length of data array A failing pixel will have the integration tuple set to C{(nan, nan)}. @param obj: Object containing spectra that will have the integration calculated from them. @type obj: C{SOM.SOM} or C{SOM.SO} @param kwargs: A list of keyword arguments that the function accepts: @keyword start: The start range for the integration. @type start: C{int} @keyword end: The end range for the integration. function. @type end: C{int} @keyword axis_pos: This is position of the axis in the axis array. If no argument is given, the default value is I{0}. @type axis_pos: C{int} @keyword norm: This is a flag to turn on the division of the individual spectrum integrations by the solid angle of the corresponding pixel. This also activates the multiplication of the individual spectrum bin values by their corresponding bin width via the I{width} flag in L{integrate_axis}. The default value of the flag is I{False}. @type norm: C{boolean} @keyword total: This is a flag to turn on the summation of all individual spectrum integrations. The default value of the flag is I{False}. @type total: C{boolean} @keyword width: This is a flag to turn on the removal of the individual bin width in the L{integrate_axis} function while doing the integrations. The default value of the flag is I{False}. @type width: C{boolean} @return: Object containing the integration and the uncertainty squared associated with the integration @rtype: C{SOM.SOM} or C{SOM.SO} """ # import the helper functions import hlr_utils if obj is None: return obj # set up for working through data (result, res_descr) = hlr_utils.empty_result(obj) o_descr = hlr_utils.get_descr(obj) result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr) # Check for axis_pos keyword argument try: axis_pos = kwargs["axis_pos"] except KeyError: axis_pos = 0 # Check for norm keyword argument try: norm = kwargs["norm"] if norm: if o_descr == "SO": raise RuntimeError("Cannot use norm keyword with SO!") width = True inst = obj.attr_list.instrument else: width = False except KeyError: norm = False width = False # Check for total keyword argument try: total = kwargs["total"] except KeyError: total = False # Check for width keyword argument only if norm isn't present if not norm: try: width = kwargs["width"] except KeyError: width = False # If the integration start bound is not given, set to infinity try: i_start = kwargs["start"] except KeyError: i_start = float("inf") # If the integration end bound is not given, set to infinity try: i_end = kwargs["end"] except KeyError: i_end = float("inf") # iterate through the values import dr_lib len_obj = hlr_utils.get_length(obj) for i in xrange(len_obj): obj1 = hlr_utils.get_value(obj, i, o_descr, "all") # If there's a NaN at the front and back, there are NaN's everywhere if str(obj1.axis[axis_pos].val[0]) == "nan" and \ str(obj1.axis[axis_pos].val[-1]) == "nan": print "Range not found:", obj1.id, i_start, i_end, len(obj1) value = (float('nan'), float('nan')) else: value = dr_lib.integrate_axis(obj1, start=i_start, end=i_end, width=width) if norm: if inst.get_name() == "BSS": map_so = hlr_utils.get_map_so(obj, None, i) dOmega = dr_lib.calc_BSS_solid_angle(map_so, inst) value1 = (value[0] / dOmega, value[1] / (dOmega * dOmega)) else: raise RuntimeError("Do not know how to get solid angle from "\ +"%s" % inst.get_name()) else: value1 = value hlr_utils.result_insert(result, res_descr, value1, obj1, "yonly") if not total: return result else: # Sum all integration counts total_counts = 0 total_err2 = 0 for j in xrange(hlr_utils.get_length(result)): total_counts += hlr_utils.get_value(result, j, res_descr, "y") total_err2 += hlr_utils.get_err2(result, j, res_descr, "y") # Create new result object (result2, res2_descr) = hlr_utils.empty_result(result) result2 = hlr_utils.copy_som_attr(result2, res2_descr, result, res_descr) res1 = hlr_utils.get_value(result, 0, res_descr, "all") hlr_utils.result_insert(result2, res2_descr, (total_counts, total_err2), res1, "yonly") return result2
def create_E_vs_Q_igs(som, *args, **kwargs): """ This function starts with the initial IGS wavelength axis and turns this into a 2D spectra with E and Q axes. @param som: The input object with initial IGS wavelength axis @type som: C{SOM.SOM} @param args: A mandatory list of axes for rebinning. There is a particular order to them. They should be present in the following order: Without errors 1. Energy transfer 2. Momentum transfer With errors 1. Energy transfer 2. Energy transfer error^2 3. Momentum transfer 4. Momentum transfer error ^2 @type args: C{nessi_list.NessiList}s @param kwargs: A list of keyword arguments that the function accepts: @keyword withXVar: Flag for whether the function should be expecting the associated axes to have errors. The default value will be I{False}. @type withXVar: C{boolean} @keyword data_type: Name of the data type which can be either I{histogram}, I{density} or I{coordinate}. The default value will be I{histogram} @type data_type: C{string} @keyword Q_filter: Flag to turn on or off Q filtering. The default behavior is I{True}. @type Q_filter: C{boolean} @keyword so_id: The identifier represents a number, string, tuple or other object that describes the resulting C{SO} @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID} @keyword y_label: The y axis label @type y_label: C{string} @keyword y_units: The y axis units @type y_units: C{string} @keyword x_labels: This is a list of names that sets the individual x axis labels @type x_labels: C{list} of C{string}s @keyword x_units: This is a list of names that sets the individual x axis units @type x_units: C{list} of C{string}s @keyword split: This flag causes the counts and the fractional area to be written out into separate files. @type split: C{boolean} @keyword configure: This is the object containing the driver configuration. @type configure: C{Configure} @return: Object containing a 2D C{SO} with E and Q axes @rtype: C{SOM.SOM} @raise RuntimeError: Anything other than a C{SOM} is passed to the function @raise RuntimeError: An instrument is not contained in the C{SOM} """ import nessi_list # Setup some variables dim = 2 N_y = [] N_tot = 1 N_args = len(args) # Get T0 slope in order to calculate dT = dT_i + dT_0 try: t_0_slope = som.attr_list["Time_zero_slope"][0] t_0_slope_err2 = som.attr_list["Time_zero_slope"][1] except KeyError: t_0_slope = float(0.0) t_0_slope_err2 = float(0.0) # Check withXVar keyword argument and also check number of given args. # Set xvar to the appropriate value try: value = kwargs["withXVar"] if value.lower() == "true": if N_args != 4: raise RuntimeError("Since you have requested x errors, 4 x "\ +"axes must be provided.") else: xvar = True elif value.lower() == "false": if N_args != 2: raise RuntimeError("Since you did not requested x errors, 2 "\ +"x axes must be provided.") else: xvar = False else: raise RuntimeError("Do not understand given parameter %s" % \ value) except KeyError: if N_args != 2: raise RuntimeError("Since you did not requested x errors, 2 "\ +"x axes must be provided.") else: xvar = False # Check dataType keyword argument. An offset will be set to 1 for the # histogram type and 0 for either density or coordinate try: data_type = kwargs["data_type"] if data_type.lower() == "histogram": offset = 1 elif data_type.lower() == "density" or \ data_type.lower() == "coordinate": offset = 0 else: raise RuntimeError("Do not understand data type given: %s" % \ data_type) # Default is offset for histogram except KeyError: offset = 1 try: Q_filter = kwargs["Q_filter"] except KeyError: Q_filter = True # Check for split keyword try: split = kwargs["split"] except KeyError: split = False # Check for configure keyword try: configure = kwargs["configure"] except KeyError: configure = None so_dim = SOM.SO(dim) for i in range(dim): # Set the x-axis arguments from the *args list into the new SO if not xvar: # Axis positions are 1 (Q) and 0 (E) position = dim - i - 1 so_dim.axis[i].val = args[position] else: # Axis positions are 2 (Q), 3 (eQ), 0 (E), 1 (eE) position = dim - 2 * i so_dim.axis[i].val = args[position] so_dim.axis[i].var = args[position + 1] # Set individual value axis sizes (not x-axis size) N_y.append(len(args[position]) - offset) # Calculate total 2D array size N_tot = N_tot * N_y[-1] # Create y and var_y lists from total 2D size so_dim.y = nessi_list.NessiList(N_tot) so_dim.var_y = nessi_list.NessiList(N_tot) # Create area sum and errors for the area sum lists from total 2D size area_sum = nessi_list.NessiList(N_tot) area_sum_err2 = nessi_list.NessiList(N_tot) # Create area sum and errors for the area sum lists from total 2D size bin_count = nessi_list.NessiList(N_tot) bin_count_err2 = nessi_list.NessiList(N_tot) inst = som.attr_list.instrument lambda_final = som.attr_list["Wavelength_final"] inst_name = inst.get_name() import bisect import math import dr_lib import utils arr_len = 0 #: Vector of zeros for function calculations zero_vec = None for j in xrange(hlr_utils.get_length(som)): # Get counts counts = hlr_utils.get_value(som, j, "SOM", "y") counts_err2 = hlr_utils.get_err2(som, j, "SOM", "y") arr_len = len(counts) zero_vec = nessi_list.NessiList(arr_len) # Get mapping SO map_so = hlr_utils.get_map_so(som, None, j) # Get lambda_i l_i = hlr_utils.get_value(som, j, "SOM", "x") l_i_err2 = hlr_utils.get_err2(som, j, "SOM", "x") # Get lambda_f from instrument information l_f_tuple = hlr_utils.get_special(lambda_final, map_so) l_f = l_f_tuple[0] l_f_err2 = l_f_tuple[1] # Get source to sample distance (L_s, L_s_err2) = hlr_utils.get_parameter("primary", map_so, inst) # Get sample to detector distance L_d_tuple = hlr_utils.get_parameter("secondary", map_so, inst) L_d = L_d_tuple[0] # Get polar angle from instrument information (angle, angle_err2) = hlr_utils.get_parameter("polar", map_so, inst) # Get the detector pixel height dh_tuple = hlr_utils.get_parameter("dh", map_so, inst) dh = dh_tuple[0] # Need dh in units of Angstrom dh *= 1e10 # Calculate T_i (T_i, T_i_err2) = axis_manip.wavelength_to_tof(l_i, l_i_err2, L_s, L_s_err2) # Scale counts by lambda_f / lambda_i (l_i_bc, l_i_bc_err2) = utils.calc_bin_centers(l_i, l_i_err2) (ratio, ratio_err2) = array_manip.div_ncerr(l_f, l_f_err2, l_i_bc, l_i_bc_err2) (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2, ratio, ratio_err2) # Calculate E_i (E_i, E_i_err2) = axis_manip.wavelength_to_energy(l_i, l_i_err2) # Calculate E_f (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f, l_f_err2) # Calculate E_t (E_t, E_t_err2) = array_manip.sub_ncerr(E_i, E_i_err2, E_f, E_f_err2) if inst_name == "BSS": # Convert E_t from meV to ueV (E_t, E_t_err2) = array_manip.mult_ncerr(E_t, E_t_err2, 1000.0, 0.0) (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2, 1.0/1000.0, 0.0) # Convert lambda_i to k_i (k_i, k_i_err2) = axis_manip.wavelength_to_scalar_k(l_i, l_i_err2) # Convert lambda_f to k_f (k_f, k_f_err2) = axis_manip.wavelength_to_scalar_k(l_f, l_f_err2) # Convert k_i and k_f to Q (Q, Q_err2) = axis_manip.init_scatt_wavevector_to_scalar_Q(k_i, k_i_err2, k_f, k_f_err2, angle, angle_err2) # Calculate dT = dT_0 + dT_i dT_i = utils.calc_bin_widths(T_i, T_i_err2) (l_i_bw, l_i_bw_err2) = utils.calc_bin_widths(l_i, l_i_err2) dT_0 = array_manip.mult_ncerr(l_i_bw, l_i_bw_err2, t_0_slope, t_0_slope_err2) dT_tuple = array_manip.add_ncerr(dT_i[0], dT_i[1], dT_0[0], dT_0[1]) dT = dT_tuple[0] # Calculate Jacobian if inst_name == "BSS": (x_1, x_2, x_3, x_4) = dr_lib.calc_BSS_coeffs(map_so, inst, (E_i, E_i_err2), (Q, Q_err2), (k_i, k_i_err2), (T_i, T_i_err2), dh, angle, E_f, k_f, l_f, L_s, L_d, t_0_slope, zero_vec) else: raise RuntimeError("Do not know how to calculate x_i "\ +"coefficients for instrument %s" % inst_name) (A, A_err2) = dr_lib.calc_EQ_Jacobian(x_1, x_2, x_3, x_4, dT, dh, zero_vec) # Apply Jacobian: C/dlam * dlam / A(EQ) = C/EQ (jac_ratio, jac_ratio_err2) = array_manip.div_ncerr(l_i_bw, l_i_bw_err2, A, A_err2) (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2, jac_ratio, jac_ratio_err2) # Reverse counts, E_t, k_i and Q E_t = axis_manip.reverse_array_cp(E_t) E_t_err2 = axis_manip.reverse_array_cp(E_t_err2) Q = axis_manip.reverse_array_cp(Q) Q_err2 = axis_manip.reverse_array_cp(Q_err2) counts = axis_manip.reverse_array_cp(counts) counts_err2 = axis_manip.reverse_array_cp(counts_err2) k_i = axis_manip.reverse_array_cp(k_i) x_1 = axis_manip.reverse_array_cp(x_1) x_2 = axis_manip.reverse_array_cp(x_2) x_3 = axis_manip.reverse_array_cp(x_3) x_4 = axis_manip.reverse_array_cp(x_4) dT = axis_manip.reverse_array_cp(dT) # Filter for duplicate Q values if Q_filter: k_i_cutoff = k_f * math.cos(angle) k_i_cutbin = bisect.bisect(k_i, k_i_cutoff) counts.__delslice__(0, k_i_cutbin) counts_err2.__delslice__(0, k_i_cutbin) Q.__delslice__(0, k_i_cutbin) Q_err2.__delslice__(0, k_i_cutbin) E_t.__delslice__(0, k_i_cutbin) E_t_err2.__delslice__(0, k_i_cutbin) x_1.__delslice__(0, k_i_cutbin) x_2.__delslice__(0, k_i_cutbin) x_3.__delslice__(0, k_i_cutbin) x_4.__delslice__(0, k_i_cutbin) dT.__delslice__(0, k_i_cutbin) zero_vec.__delslice__(0, k_i_cutbin) try: if inst_name == "BSS": ((Q_1, E_t_1), (Q_2, E_t_2), (Q_3, E_t_3), (Q_4, E_t_4)) = dr_lib.calc_BSS_EQ_verticies((E_t, E_t_err2), (Q, Q_err2), x_1, x_2, x_3, x_4, dT, dh, zero_vec) else: raise RuntimeError("Do not know how to calculate (Q_i, "\ +"E_t_i) verticies for instrument %s" \ % inst_name) except IndexError: # All the data got Q filtered, move on continue try: (y_2d, y_2d_err2, area_new, bin_count_new) = axis_manip.rebin_2D_quad_to_rectlin(Q_1, E_t_1, Q_2, E_t_2, Q_3, E_t_3, Q_4, E_t_4, counts, counts_err2, so_dim.axis[0].val, so_dim.axis[1].val) except IndexError, e: # Get the offending index from the error message index = int(str(e).split()[1].split('index')[-1].strip('[]')) print "Id:", map_so.id print "Index:", index print "Verticies: %f, %f, %f, %f, %f, %f, %f, %f" % (Q_1[index], E_t_1[index], Q_2[index], E_t_2[index], Q_3[index], E_t_3[index], Q_4[index], E_t_4[index]) raise IndexError(str(e)) # Add in together with previous results (so_dim.y, so_dim.var_y) = array_manip.add_ncerr(so_dim.y, so_dim.var_y, y_2d, y_2d_err2) (area_sum, area_sum_err2) = array_manip.add_ncerr(area_sum, area_sum_err2, area_new, area_sum_err2) if configure.dump_pix_contrib or configure.scale_sqe: if inst_name == "BSS": dOmega = dr_lib.calc_BSS_solid_angle(map_so, inst) (bin_count_new, bin_count_err2) = array_manip.mult_ncerr(bin_count_new, bin_count_err2, dOmega, 0.0) (bin_count, bin_count_err2) = array_manip.add_ncerr(bin_count, bin_count_err2, bin_count_new, bin_count_err2) else: del bin_count_new
def create_E_vs_Q_igs(som, *args, **kwargs): """ This function starts with the initial IGS wavelength axis and turns this into a 2D spectra with E and Q axes. @param som: The input object with initial IGS wavelength axis @type som: C{SOM.SOM} @param args: A mandatory list of axes for rebinning. There is a particular order to them. They should be present in the following order: Without errors 1. Energy transfer 2. Momentum transfer With errors 1. Energy transfer 2. Energy transfer error^2 3. Momentum transfer 4. Momentum transfer error ^2 @type args: C{nessi_list.NessiList}s @param kwargs: A list of keyword arguments that the function accepts: @keyword withXVar: Flag for whether the function should be expecting the associated axes to have errors. The default value will be I{False}. @type withXVar: C{boolean} @keyword data_type: Name of the data type which can be either I{histogram}, I{density} or I{coordinate}. The default value will be I{histogram} @type data_type: C{string} @keyword Q_filter: Flag to turn on or off Q filtering. The default behavior is I{True}. @type Q_filter: C{boolean} @keyword so_id: The identifier represents a number, string, tuple or other object that describes the resulting C{SO} @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID} @keyword y_label: The y axis label @type y_label: C{string} @keyword y_units: The y axis units @type y_units: C{string} @keyword x_labels: This is a list of names that sets the individual x axis labels @type x_labels: C{list} of C{string}s @keyword x_units: This is a list of names that sets the individual x axis units @type x_units: C{list} of C{string}s @keyword split: This flag causes the counts and the fractional area to be written out into separate files. @type split: C{boolean} @keyword configure: This is the object containing the driver configuration. @type configure: C{Configure} @return: Object containing a 2D C{SO} with E and Q axes @rtype: C{SOM.SOM} @raise RuntimeError: Anything other than a C{SOM} is passed to the function @raise RuntimeError: An instrument is not contained in the C{SOM} """ import nessi_list # Setup some variables dim = 2 N_y = [] N_tot = 1 N_args = len(args) # Get T0 slope in order to calculate dT = dT_i + dT_0 try: t_0_slope = som.attr_list["Time_zero_slope"][0] t_0_slope_err2 = som.attr_list["Time_zero_slope"][1] except KeyError: t_0_slope = float(0.0) t_0_slope_err2 = float(0.0) # Check withXVar keyword argument and also check number of given args. # Set xvar to the appropriate value try: value = kwargs["withXVar"] if value.lower() == "true": if N_args != 4: raise RuntimeError("Since you have requested x errors, 4 x "\ +"axes must be provided.") else: xvar = True elif value.lower() == "false": if N_args != 2: raise RuntimeError("Since you did not requested x errors, 2 "\ +"x axes must be provided.") else: xvar = False else: raise RuntimeError("Do not understand given parameter %s" % \ value) except KeyError: if N_args != 2: raise RuntimeError("Since you did not requested x errors, 2 "\ +"x axes must be provided.") else: xvar = False # Check dataType keyword argument. An offset will be set to 1 for the # histogram type and 0 for either density or coordinate try: data_type = kwargs["data_type"] if data_type.lower() == "histogram": offset = 1 elif data_type.lower() == "density" or \ data_type.lower() == "coordinate": offset = 0 else: raise RuntimeError("Do not understand data type given: %s" % \ data_type) # Default is offset for histogram except KeyError: offset = 1 try: Q_filter = kwargs["Q_filter"] except KeyError: Q_filter = True # Check for split keyword try: split = kwargs["split"] except KeyError: split = False # Check for configure keyword try: configure = kwargs["configure"] except KeyError: configure = None so_dim = SOM.SO(dim) for i in range(dim): # Set the x-axis arguments from the *args list into the new SO if not xvar: # Axis positions are 1 (Q) and 0 (E) position = dim - i - 1 so_dim.axis[i].val = args[position] else: # Axis positions are 2 (Q), 3 (eQ), 0 (E), 1 (eE) position = dim - 2 * i so_dim.axis[i].val = args[position] so_dim.axis[i].var = args[position + 1] # Set individual value axis sizes (not x-axis size) N_y.append(len(args[position]) - offset) # Calculate total 2D array size N_tot = N_tot * N_y[-1] # Create y and var_y lists from total 2D size so_dim.y = nessi_list.NessiList(N_tot) so_dim.var_y = nessi_list.NessiList(N_tot) # Create area sum and errors for the area sum lists from total 2D size area_sum = nessi_list.NessiList(N_tot) area_sum_err2 = nessi_list.NessiList(N_tot) # Create area sum and errors for the area sum lists from total 2D size bin_count = nessi_list.NessiList(N_tot) bin_count_err2 = nessi_list.NessiList(N_tot) inst = som.attr_list.instrument lambda_final = som.attr_list["Wavelength_final"] inst_name = inst.get_name() import bisect import math import dr_lib import utils arr_len = 0 #: Vector of zeros for function calculations zero_vec = None for j in xrange(hlr_utils.get_length(som)): # Get counts counts = hlr_utils.get_value(som, j, "SOM", "y") counts_err2 = hlr_utils.get_err2(som, j, "SOM", "y") arr_len = len(counts) zero_vec = nessi_list.NessiList(arr_len) # Get mapping SO map_so = hlr_utils.get_map_so(som, None, j) # Get lambda_i l_i = hlr_utils.get_value(som, j, "SOM", "x") l_i_err2 = hlr_utils.get_err2(som, j, "SOM", "x") # Get lambda_f from instrument information l_f_tuple = hlr_utils.get_special(lambda_final, map_so) l_f = l_f_tuple[0] l_f_err2 = l_f_tuple[1] # Get source to sample distance (L_s, L_s_err2) = hlr_utils.get_parameter("primary", map_so, inst) # Get sample to detector distance L_d_tuple = hlr_utils.get_parameter("secondary", map_so, inst) L_d = L_d_tuple[0] # Get polar angle from instrument information (angle, angle_err2) = hlr_utils.get_parameter("polar", map_so, inst) # Get the detector pixel height dh_tuple = hlr_utils.get_parameter("dh", map_so, inst) dh = dh_tuple[0] # Need dh in units of Angstrom dh *= 1e10 # Calculate T_i (T_i, T_i_err2) = axis_manip.wavelength_to_tof(l_i, l_i_err2, L_s, L_s_err2) # Scale counts by lambda_f / lambda_i (l_i_bc, l_i_bc_err2) = utils.calc_bin_centers(l_i, l_i_err2) (ratio, ratio_err2) = array_manip.div_ncerr(l_f, l_f_err2, l_i_bc, l_i_bc_err2) (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2, ratio, ratio_err2) # Calculate E_i (E_i, E_i_err2) = axis_manip.wavelength_to_energy(l_i, l_i_err2) # Calculate E_f (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f, l_f_err2) # Calculate E_t (E_t, E_t_err2) = array_manip.sub_ncerr(E_i, E_i_err2, E_f, E_f_err2) if inst_name == "BSS": # Convert E_t from meV to ueV (E_t, E_t_err2) = array_manip.mult_ncerr(E_t, E_t_err2, 1000.0, 0.0) (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2, 1.0 / 1000.0, 0.0) # Convert lambda_i to k_i (k_i, k_i_err2) = axis_manip.wavelength_to_scalar_k(l_i, l_i_err2) # Convert lambda_f to k_f (k_f, k_f_err2) = axis_manip.wavelength_to_scalar_k(l_f, l_f_err2) # Convert k_i and k_f to Q (Q, Q_err2) = axis_manip.init_scatt_wavevector_to_scalar_Q( k_i, k_i_err2, k_f, k_f_err2, angle, angle_err2) # Calculate dT = dT_0 + dT_i dT_i = utils.calc_bin_widths(T_i, T_i_err2) (l_i_bw, l_i_bw_err2) = utils.calc_bin_widths(l_i, l_i_err2) dT_0 = array_manip.mult_ncerr(l_i_bw, l_i_bw_err2, t_0_slope, t_0_slope_err2) dT_tuple = array_manip.add_ncerr(dT_i[0], dT_i[1], dT_0[0], dT_0[1]) dT = dT_tuple[0] # Calculate Jacobian if inst_name == "BSS": (x_1, x_2, x_3, x_4) = dr_lib.calc_BSS_coeffs( map_so, inst, (E_i, E_i_err2), (Q, Q_err2), (k_i, k_i_err2), (T_i, T_i_err2), dh, angle, E_f, k_f, l_f, L_s, L_d, t_0_slope, zero_vec) else: raise RuntimeError("Do not know how to calculate x_i "\ +"coefficients for instrument %s" % inst_name) (A, A_err2) = dr_lib.calc_EQ_Jacobian(x_1, x_2, x_3, x_4, dT, dh, zero_vec) # Apply Jacobian: C/dlam * dlam / A(EQ) = C/EQ (jac_ratio, jac_ratio_err2) = array_manip.div_ncerr(l_i_bw, l_i_bw_err2, A, A_err2) (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2, jac_ratio, jac_ratio_err2) # Reverse counts, E_t, k_i and Q E_t = axis_manip.reverse_array_cp(E_t) E_t_err2 = axis_manip.reverse_array_cp(E_t_err2) Q = axis_manip.reverse_array_cp(Q) Q_err2 = axis_manip.reverse_array_cp(Q_err2) counts = axis_manip.reverse_array_cp(counts) counts_err2 = axis_manip.reverse_array_cp(counts_err2) k_i = axis_manip.reverse_array_cp(k_i) x_1 = axis_manip.reverse_array_cp(x_1) x_2 = axis_manip.reverse_array_cp(x_2) x_3 = axis_manip.reverse_array_cp(x_3) x_4 = axis_manip.reverse_array_cp(x_4) dT = axis_manip.reverse_array_cp(dT) # Filter for duplicate Q values if Q_filter: k_i_cutoff = k_f * math.cos(angle) k_i_cutbin = bisect.bisect(k_i, k_i_cutoff) counts.__delslice__(0, k_i_cutbin) counts_err2.__delslice__(0, k_i_cutbin) Q.__delslice__(0, k_i_cutbin) Q_err2.__delslice__(0, k_i_cutbin) E_t.__delslice__(0, k_i_cutbin) E_t_err2.__delslice__(0, k_i_cutbin) x_1.__delslice__(0, k_i_cutbin) x_2.__delslice__(0, k_i_cutbin) x_3.__delslice__(0, k_i_cutbin) x_4.__delslice__(0, k_i_cutbin) dT.__delslice__(0, k_i_cutbin) zero_vec.__delslice__(0, k_i_cutbin) try: if inst_name == "BSS": ((Q_1, E_t_1), (Q_2, E_t_2), (Q_3, E_t_3), (Q_4, E_t_4)) = dr_lib.calc_BSS_EQ_verticies( (E_t, E_t_err2), (Q, Q_err2), x_1, x_2, x_3, x_4, dT, dh, zero_vec) else: raise RuntimeError("Do not know how to calculate (Q_i, "\ +"E_t_i) verticies for instrument %s" \ % inst_name) except IndexError: # All the data got Q filtered, move on continue try: (y_2d, y_2d_err2, area_new, bin_count_new) = axis_manip.rebin_2D_quad_to_rectlin( Q_1, E_t_1, Q_2, E_t_2, Q_3, E_t_3, Q_4, E_t_4, counts, counts_err2, so_dim.axis[0].val, so_dim.axis[1].val) except IndexError, e: # Get the offending index from the error message index = int(str(e).split()[1].split('index')[-1].strip('[]')) print "Id:", map_so.id print "Index:", index print "Verticies: %f, %f, %f, %f, %f, %f, %f, %f" % ( Q_1[index], E_t_1[index], Q_2[index], E_t_2[index], Q_3[index], E_t_3[index], Q_4[index], E_t_4[index]) raise IndexError(str(e)) # Add in together with previous results (so_dim.y, so_dim.var_y) = array_manip.add_ncerr(so_dim.y, so_dim.var_y, y_2d, y_2d_err2) (area_sum, area_sum_err2) = array_manip.add_ncerr(area_sum, area_sum_err2, area_new, area_sum_err2) if configure.dump_pix_contrib or configure.scale_sqe: if inst_name == "BSS": dOmega = dr_lib.calc_BSS_solid_angle(map_so, inst) (bin_count_new, bin_count_err2) = array_manip.mult_ncerr( bin_count_new, bin_count_err2, dOmega, 0.0) (bin_count, bin_count_err2) = array_manip.add_ncerr( bin_count, bin_count_err2, bin_count_new, bin_count_err2) else: del bin_count_new
def energy_transfer(obj, itype, axis_const, **kwargs): """ This function takes a SOM with a wavelength axis (initial for IGS and final for DGS) and calculates the energy transfer. @param obj: The object containing the wavelength axis @type obj: C{SOM.SOM} @param itype: The instrument class type. The choices are either I{IGS} or I{DGS}. @type itype: C{string} @param axis_const: The attribute name for the axis constant which is the final wavelength for I{IGS} and the initial energy for I{DGS}. @type axis_const: C{string} @param kwargs: A list of keyword arguments that the function accepts: @keyword units: The units for the incoming axis. The default is I{Angstroms}. @type units: C{string} @keyword change_units: A flag that signals the function to convert from I{meV} to I{ueV}. The default is I{False}. @type change_units: C{boolean} @keyword scale: A flag to scale the y-axis by lambda_f/lambda_i for I{IGS} and lambda_i/lambda_f for I{DGS}. The default is I{False}. @type scale: C{boolean} @keyword lojac: A flag that turns on the calculation and application of the linear-order Jacobian. The default is I{False}. @type lojac: C{boolean} @keyword sa_norm: A flag to turn on solid angle normlaization. @type sa_norm: C{boolean} @return: Object with the energy transfer calculated in units of I{meV} or I{ueV}. The default is I{meV}. @rtype: C{SOM.SOM} @raise RuntimeError: The instrument class type is not recognized @raise RuntimeError: The x-axis units are not Angstroms @raise RuntimeError: A SOM is not given to the function """ # Check the instrument class type to make sure its allowed allowed_types = ["DGS", "IGS"] if itype not in allowed_types: raise RuntimeError("The instrument class type %s is not known. "\ +"Please use DGS or IGS" % itype) # import the helper functions import hlr_utils # set up for working through data (result, res_descr) = hlr_utils.empty_result(obj) o_descr = hlr_utils.get_descr(obj) if o_descr != "SOM": raise RuntimeError("Must provide a SOM to the function.") # Go on else: pass # Setup keyword arguments try: units = kwargs["units"] except KeyError: units = "Angstroms" try: change_units = kwargs["change_units"] except KeyError: change_units = False try: scale = kwargs["scale"] except KeyError: scale = False try: sa_norm = kwargs["sa_norm"] except KeyError: sa_norm = False if sa_norm: inst = obj.attr_list.instrument try: lojac = kwargs["lojac"] except KeyError: lojac = False # Primary axis for transformation. axis = hlr_utils.one_d_units(obj, units) # Get the subtraction constant try: axis_c = obj.attr_list[axis_const] except KeyError: raise RuntimeError("Must provide a final wavelength (IGS) or initial "\ +"energy (DGS) via the incoming SOM") result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr) if change_units: unit_str = "ueV" else: unit_str = "meV" result = hlr_utils.force_units(result, unit_str, axis) result.setAxisLabel(axis, "energy_transfer") result.setYUnits("Counts/" + unit_str) result.setYLabel("Intensity") # iterate through the values import array_manip import axis_manip import dr_lib import utils for i in xrange(hlr_utils.get_length(obj)): if itype == "IGS": l_i = hlr_utils.get_value(obj, i, o_descr, "x", axis) l_i_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis) else: l_f = hlr_utils.get_value(obj, i, o_descr, "x", axis) l_f_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis) y_val = hlr_utils.get_value(obj, i, o_descr, "y", axis) y_err2 = hlr_utils.get_err2(obj, i, o_descr, "y", axis) map_so = hlr_utils.get_map_so(obj, None, i) if itype == "IGS": (E_i, E_i_err2) = axis_manip.wavelength_to_energy(l_i, l_i_err2) l_f = hlr_utils.get_special(axis_c, map_so)[:2] (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f[0], l_f[1]) if lojac: (y_val, y_err2) = utils.linear_order_jacobian(l_i, E_i, y_val, y_err2) else: (E_i, E_i_err2) = axis_c.toValErrTuple() (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f, l_f_err2) if lojac: (y_val, y_err2) = utils.linear_order_jacobian(l_f, E_f, y_val, y_err2) if scale: # Scale counts by lambda_f / lambda_i if itype == "IGS": (l_n, l_n_err2) = l_f (l_d, l_d_err2) = utils.calc_bin_centers(l_i, l_i_err2) else: (l_n, l_n_err2) = utils.calc_bin_centers(l_f, l_f_err2) (l_d, l_d_err2) = axis_manip.energy_to_wavelength(E_i, E_i_err2) ratio = array_manip.div_ncerr(l_n, l_n_err2, l_d, l_d_err2) scale_y = array_manip.mult_ncerr(y_val, y_err2, ratio[0], ratio[1]) else: scale_y = (y_val, y_err2) value = array_manip.sub_ncerr(E_i, E_i_err2, E_f, E_f_err2) if change_units: # Convert from meV to ueV value2 = array_manip.mult_ncerr(value[0], value[1], 1000.0, 0.0) scale_y = array_manip.mult_ncerr(scale_y[0], scale_y[1], 1.0/1000.0, 0.0) else: value2 = value if sa_norm: if inst.get_name() == "BSS": dOmega = dr_lib.calc_BSS_solid_angle(map_so, inst) scale_y = array_manip.div_ncerr(scale_y[0], scale_y[1], dOmega, 0.0) else: raise RuntimeError("Do not know how to get solid angle from "\ +"%s" % inst.get_name()) if itype == "IGS": # Reverse the values due to the conversion value_y = axis_manip.reverse_array_cp(scale_y[0]) value_var_y = axis_manip.reverse_array_cp(scale_y[1]) value_x = axis_manip.reverse_array_cp(value2[0]) else: value_y = scale_y[0] value_var_y = scale_y[1] value_x = value2[0] hlr_utils.result_insert(result, res_descr, (value_y, value_var_y), map_so, "all", 0, [value_x]) return result
def energy_transfer(obj, itype, axis_const, **kwargs): """ This function takes a SOM with a wavelength axis (initial for IGS and final for DGS) and calculates the energy transfer. @param obj: The object containing the wavelength axis @type obj: C{SOM.SOM} @param itype: The instrument class type. The choices are either I{IGS} or I{DGS}. @type itype: C{string} @param axis_const: The attribute name for the axis constant which is the final wavelength for I{IGS} and the initial energy for I{DGS}. @type axis_const: C{string} @param kwargs: A list of keyword arguments that the function accepts: @keyword units: The units for the incoming axis. The default is I{Angstroms}. @type units: C{string} @keyword change_units: A flag that signals the function to convert from I{meV} to I{ueV}. The default is I{False}. @type change_units: C{boolean} @keyword scale: A flag to scale the y-axis by lambda_f/lambda_i for I{IGS} and lambda_i/lambda_f for I{DGS}. The default is I{False}. @type scale: C{boolean} @keyword lojac: A flag that turns on the calculation and application of the linear-order Jacobian. The default is I{False}. @type lojac: C{boolean} @keyword sa_norm: A flag to turn on solid angle normlaization. @type sa_norm: C{boolean} @return: Object with the energy transfer calculated in units of I{meV} or I{ueV}. The default is I{meV}. @rtype: C{SOM.SOM} @raise RuntimeError: The instrument class type is not recognized @raise RuntimeError: The x-axis units are not Angstroms @raise RuntimeError: A SOM is not given to the function """ # Check the instrument class type to make sure its allowed allowed_types = ["DGS", "IGS"] if itype not in allowed_types: raise RuntimeError("The instrument class type %s is not known. "\ +"Please use DGS or IGS" % itype) # import the helper functions import hlr_utils # set up for working through data (result, res_descr) = hlr_utils.empty_result(obj) o_descr = hlr_utils.get_descr(obj) if o_descr != "SOM": raise RuntimeError("Must provide a SOM to the function.") # Go on else: pass # Setup keyword arguments try: units = kwargs["units"] except KeyError: units = "Angstroms" try: change_units = kwargs["change_units"] except KeyError: change_units = False try: scale = kwargs["scale"] except KeyError: scale = False try: sa_norm = kwargs["sa_norm"] except KeyError: sa_norm = False if sa_norm: inst = obj.attr_list.instrument try: lojac = kwargs["lojac"] except KeyError: lojac = False # Primary axis for transformation. axis = hlr_utils.one_d_units(obj, units) # Get the subtraction constant try: axis_c = obj.attr_list[axis_const] except KeyError: raise RuntimeError("Must provide a final wavelength (IGS) or initial "\ +"energy (DGS) via the incoming SOM") result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr) if change_units: unit_str = "ueV" else: unit_str = "meV" result = hlr_utils.force_units(result, unit_str, axis) result.setAxisLabel(axis, "energy_transfer") result.setYUnits("Counts/" + unit_str) result.setYLabel("Intensity") # iterate through the values import array_manip import axis_manip import dr_lib import utils for i in xrange(hlr_utils.get_length(obj)): if itype == "IGS": l_i = hlr_utils.get_value(obj, i, o_descr, "x", axis) l_i_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis) else: l_f = hlr_utils.get_value(obj, i, o_descr, "x", axis) l_f_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis) y_val = hlr_utils.get_value(obj, i, o_descr, "y", axis) y_err2 = hlr_utils.get_err2(obj, i, o_descr, "y", axis) map_so = hlr_utils.get_map_so(obj, None, i) if itype == "IGS": (E_i, E_i_err2) = axis_manip.wavelength_to_energy(l_i, l_i_err2) l_f = hlr_utils.get_special(axis_c, map_so)[:2] (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f[0], l_f[1]) if lojac: (y_val, y_err2) = utils.linear_order_jacobian(l_i, E_i, y_val, y_err2) else: (E_i, E_i_err2) = axis_c.toValErrTuple() (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f, l_f_err2) if lojac: (y_val, y_err2) = utils.linear_order_jacobian(l_f, E_f, y_val, y_err2) if scale: # Scale counts by lambda_f / lambda_i if itype == "IGS": (l_n, l_n_err2) = l_f (l_d, l_d_err2) = utils.calc_bin_centers(l_i, l_i_err2) else: (l_n, l_n_err2) = utils.calc_bin_centers(l_f, l_f_err2) (l_d, l_d_err2) = axis_manip.energy_to_wavelength(E_i, E_i_err2) ratio = array_manip.div_ncerr(l_n, l_n_err2, l_d, l_d_err2) scale_y = array_manip.mult_ncerr(y_val, y_err2, ratio[0], ratio[1]) else: scale_y = (y_val, y_err2) value = array_manip.sub_ncerr(E_i, E_i_err2, E_f, E_f_err2) if change_units: # Convert from meV to ueV value2 = array_manip.mult_ncerr(value[0], value[1], 1000.0, 0.0) scale_y = array_manip.mult_ncerr(scale_y[0], scale_y[1], 1.0 / 1000.0, 0.0) else: value2 = value if sa_norm: if inst.get_name() == "BSS": dOmega = dr_lib.calc_BSS_solid_angle(map_so, inst) scale_y = array_manip.div_ncerr(scale_y[0], scale_y[1], dOmega, 0.0) else: raise RuntimeError("Do not know how to get solid angle from "\ +"%s" % inst.get_name()) if itype == "IGS": # Reverse the values due to the conversion value_y = axis_manip.reverse_array_cp(scale_y[0]) value_var_y = axis_manip.reverse_array_cp(scale_y[1]) value_x = axis_manip.reverse_array_cp(value2[0]) else: value_y = scale_y[0] value_var_y = scale_y[1] value_x = value2[0] hlr_utils.result_insert(result, res_descr, (value_y, value_var_y), map_so, "all", 0, [value_x]) return result