예제 #1
0
def run(config, tim=None):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}

    @param tim: (OPTIONAL) Object that will allow the method to perform
                           timing evaluations.
    @type tim: C{sns_time.DiffTime}
    """
    import common_lib
    import dr_lib
    import DST

    if tim is not None:
        tim.getTime(False)
        old_time = tim.getOldTime()

    if config.data is None:
        raise RuntimeError("Need to pass a data filename to the driver "\
                           +"script.")

    # Read in geometry if one is provided
    if config.inst_geom is not None:
        if config.verbose:
            print "Reading in instrument geometry file"

        inst_geom_dst = DST.getInstance("application/x-NxsGeom",
                                        config.inst_geom)
    else:
        inst_geom_dst = None

    config.so_axis = "time_of_flight"

    try:
        if type(config.mask_file) == type([]):
            if len(config.mask_file) > 1:
                if config.verbose:
                    print "Creating combined mask file"

                if tim is not None:
                    tim.getTime(False)

                config.mask_file = hlr_utils.merge_roi_files(\
                        config.mask_file,
                        config)

                if tim is not None:
                    tim.getTime(msg="After creating combined mask file")
            else:
                config.mask_file = config.mask_file[0]
        else:
            # Do nothing since it's already a string
            pass
    except TypeError:
        # No mask files provided, do nothing
        pass

    # Steps 1-3: Produce a scaled summed dark current dataset
    dc_som = dr_lib.scaled_summed_data(config.dkcur,
                                       config,
                                       dataset_type="dark_current",
                                       timer=tim)

    # Perform Steps 3-6 on black can data
    if config.bcan is not None:
        b_som1 = dr_lib.calibrate_dgs_data(config.bcan,
                                           config,
                                           dc_som,
                                           dataset_type="black_can",
                                           inst_geom_dst=inst_geom_dst,
                                           tib_const=config.tib_const,
                                           cwp=config.cwp_bcan,
                                           timer=tim)
    else:
        b_som1 = None

    # Perform Steps 3-6 on empty can data
    if config.ecan is not None:
        e_som1 = dr_lib.calibrate_dgs_data(config.ecan,
                                           config,
                                           dc_som,
                                           dataset_type="empty_can",
                                           inst_geom_dst=inst_geom_dst,
                                           tib_const=config.tib_const,
                                           cwp=config.cwp_ecan,
                                           timer=tim)
    else:
        e_som1 = None

    # Perform Steps 3-6 on sample data
    d_som1 = dr_lib.calibrate_dgs_data(config.data,
                                       config,
                                       dc_som,
                                       inst_geom_dst=inst_geom_dst,
                                       tib_const=config.tib_const,
                                       cwp=config.cwp_data,
                                       timer=tim)

    # Perform Steps 7-16 on sample data
    if config.data_trans_coeff is None:
        data_trans_coeff = None
    else:
        data_trans_coeff = config.data_trans_coeff.toValErrTuple()

    # Determine if we need to rebin the empty or black can data
    if config.ecan is not None and e_som1 is not None:
        ecan_cwp = True
    else:
        ecan_cwp = False

    if config.bcan is not None and b_som1 is not None:
        bcan_cwp = True
    else:
        bcan_cwp = False

    cwp_used = ecan_cwp or bcan_cwp

    d_som2 = dr_lib.process_dgs_data(d_som1,
                                     config,
                                     b_som1,
                                     e_som1,
                                     data_trans_coeff,
                                     cwp_used=cwp_used,
                                     timer=tim)

    del d_som1

    del b_som1, e_som1

    # Step 18: Normalize sample data by integrated values
    if config.norm is not None:
        if config.verbose:
            print "Reading normalization information"

        norm_int = dr_lib.add_files(config.norm,
                                    Signal_ROI=config.roi_file,
                                    Signal_MASK=config.mask_file,
                                    dataset_type="normalization",
                                    dst_type="text/num-info",
                                    Verbose=config.verbose,
                                    Timer=tim)

        # Make the labels and units compatible with a NeXus file based SOM
        norm_int.setAllAxisLabels(["wavelength"])
        norm_int.setAllAxisUnits(["Angstroms"])
        norm_int.setYLabel("Intensity")
        norm_int.setYUnits("Counts/Angstroms")

        if config.verbose:
            print "Normalizing data by normalization data"

        if tim is not None:
            tim.getTime(False)

        d_som3 = common_lib.div_ncerr(d_som2, norm_int)

        if tim is not None:
            tim.getTime(msg="After normalizing data ")

        del norm_int
    else:
        d_som3 = d_som2

    del d_som2

    # Step 19: Calculate the initial energy
    if config.initial_energy is not None:
        d_som3.attr_list["Initial_Energy"] = config.initial_energy

    # Steps 20-21: Calculate the energy transfer
    if config.verbose:
        print "Calculating energy transfer"

    if tim is not None:
        tim.getTime(False)

    d_som4 = dr_lib.energy_transfer(d_som3,
                                    "DGS",
                                    "Initial_Energy",
                                    lojac=True,
                                    scale=config.lambda_ratio)

    if tim is not None:
        tim.getTime(msg="After calculating energy transfer ")

    del d_som3

    # Step 22: Rebin energy transfer spectra
    if config.verbose:
        print "Rebinning to final energy transfer axis"

    if tim is not None:
        tim.getTime(False)

    d_som5 = common_lib.rebin_axis_1D_frac(d_som4, config.E_bins.toNessiList())

    if tim is not None:
        tim.getTime(msg="After rebinning energy transfer ")

    del d_som4

    if config.dump_et_comb:
        d_som5_1 = dr_lib.sum_all_spectra(d_som5)
        hlr_utils.write_file(config.output,
                             "text/Spec",
                             d_som5_1,
                             output_ext="et",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="combined energy transfer information")

        del d_som5_1

    # Get the corner geometry information
    if config.verbose:
        print "Reading in corner geometry information"

    if tim is not None:
        tim.getTime(False)

    corner_angles = hlr_utils.get_corner_geometry(config.corner_geom)

    if tim is not None:
        tim.getTime(msg="After reading in corner geometry information ")

    if config.make_spe:
        d_som5.attr_list["corner_geom"] = corner_angles

        hlr_utils.write_file(config.output,
                             "text/PHX",
                             d_som5,
                             output_ext="phx",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="PHX information")

        hlr_utils.write_file(config.output,
                             "text/PAR",
                             d_som5,
                             output_ext="par",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="PAR information")

        hlr_utils.write_file(config.output,
                             "text/SPE",
                             d_som5,
                             output_ext="spe",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="SPE information")

    # Steps 23-34: Create S(Q, E) distribution
    if config.verbose:
        print "Creating S(Q, E)"

    if tim is not None:
        tim.getTime(False)

    d_som5_2 = dr_lib.create_E_vs_Q_dgs(d_som5,
                                        config.initial_energy.toValErrTuple(),
                                        config.Q_bins.toNessiList(),
                                        corner_angles=corner_angles,
                                        split=config.split,
                                        configure=config,
                                        timer=tim)

    # Writing 2D DAVE file
    if not config.split:
        hlr_utils.write_file(config.output,
                             "text/Dave2d",
                             d_som5_2,
                             output_ext="sqe",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="S(Q,E)")

        hlr_utils.write_file(config.output,
                             "application/x-RedNxs",
                             d_som5_2,
                             output_ext="nxs",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             extra_tag="sqe",
                             getsom_kwargs={"entry_name": "sqe"},
                             message="NeXus S(Q,E)")

    if tim is not None:
        tim.getTime(msg="After calculating S(Q,E) spectrum ")

    del d_som5_2

    if config.qmesh:
        # Steps 23-27,35-36: Create S(Qvec, E) distribution
        if config.verbose:
            print "Creating S(Qvec, E)"

        if tim is not None:
            tim.getTime(False)

        dr_lib.create_Qvec_vs_E_dgs(d_som5,
                                    config.initial_energy.toValErrTuple(),
                                    config,
                                    corner_angles=corner_angles,
                                    make_fixed=config.fixed,
                                    output=config.output,
                                    timer=tim)

        if tim is not None:
            tim.getTime(msg="After calculating final spectrum ")

    # Write out RMD file
    d_som5.attr_list["config"] = config

    hlr_utils.write_file(config.output,
                         "text/rmd",
                         d_som5,
                         output_ext="rmd",
                         data_ext=config.ext_replacement,
                         path_replacement=config.path_replacement,
                         verbose=config.verbose,
                         message="metadata")

    if tim is not None:
        tim.setOldTime(old_time)
        tim.getTime(msg="Total Running Time")
예제 #2
0
def run(config, tim=None):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}

    @param tim: (OPTIONAL) Object that will allow the method to perform
                           timing evaluations.
    @type tim: C{sns_time.DiffTime}
    """
    import common_lib
    import dr_lib
    import DST
    
    if tim is not None:
        tim.getTime(False)
        old_time = tim.getOldTime()

    if config.data is None:
        raise RuntimeError("Need to pass a data filename to the driver "\
                           +"script.")

    # Read in geometry if one is provided
    if config.inst_geom is not None:
        if config.verbose:
            print "Reading in instrument geometry file"
            
        inst_geom_dst = DST.getInstance("application/x-NxsGeom",
                                        config.inst_geom)
    else:
        inst_geom_dst = None

    config.so_axis = "time_of_flight"

    try:
        if type(config.mask_file) == type([]):
            if len(config.mask_file) > 1:
                if config.verbose:
                    print "Creating combined mask file"

                if tim is not None:
                    tim.getTime(False)
        
                config.mask_file = hlr_utils.merge_roi_files(\
                        config.mask_file,
                        config)

                if tim is not None:
                    tim.getTime(msg="After creating combined mask file")
            else:
                config.mask_file = config.mask_file[0]
        else:
            # Do nothing since it's already a string
            pass
    except TypeError:
        # No mask files provided, do nothing
        pass

    # Steps 1-3: Produce a scaled summed dark current dataset
    dc_som = dr_lib.scaled_summed_data(config.dkcur, config,
                                       dataset_type="dark_current",
                                       timer=tim)

    # Perform Steps 3-6 on black can data
    if config.bcan is not None:
        b_som1 = dr_lib.calibrate_dgs_data(config.bcan, config, dc_som,
                                           dataset_type="black_can",
                                           inst_geom_dst=inst_geom_dst,
                                           tib_const=config.tib_const,
                                           cwp=config.cwp_bcan,
                                           timer=tim)
    else:
        b_som1 = None

    # Perform Steps 3-6 on empty can data    
    if config.ecan is not None:
        e_som1 = dr_lib.calibrate_dgs_data(config.ecan, config, dc_som,
                                           dataset_type="empty_can",
                                           inst_geom_dst=inst_geom_dst,
                                           tib_const=config.tib_const,
                                           cwp=config.cwp_ecan,
                                           timer=tim)
    else:
        e_som1 = None

    # Perform Steps 3-6 on sample data
    d_som1 = dr_lib.calibrate_dgs_data(config.data, config, dc_som,
                                       inst_geom_dst=inst_geom_dst,
                                       tib_const=config.tib_const,
                                       cwp=config.cwp_data,
                                       timer=tim)

    # Perform Steps 7-16 on sample data
    if config.data_trans_coeff is None:
        data_trans_coeff = None
    else:
        data_trans_coeff = config.data_trans_coeff.toValErrTuple()

    # Determine if we need to rebin the empty or black can data
    if config.ecan is not None and e_som1 is not None:
        ecan_cwp = True
    else:
        ecan_cwp = False

    if config.bcan is not None and b_som1 is not None:
        bcan_cwp = True
    else:
        bcan_cwp = False        

    cwp_used = ecan_cwp or bcan_cwp
    
    d_som2 = dr_lib.process_dgs_data(d_som1, config, b_som1, e_som1,
                                     data_trans_coeff, cwp_used=cwp_used,
                                     timer=tim)

    del d_som1

    del b_som1, e_som1

    # Step 18: Normalize sample data by integrated values
    if config.norm is not None:
        if config.verbose:
            print "Reading normalization information"

        norm_int = dr_lib.add_files(config.norm, Signal_ROI=config.roi_file,
                                    Signal_MASK=config.mask_file,
                                    dataset_type="normalization",
                                    dst_type="text/num-info",
                                    Verbose=config.verbose,
                                    Timer=tim)
        
        # Make the labels and units compatible with a NeXus file based SOM
        norm_int.setAllAxisLabels(["wavelength"])
        norm_int.setAllAxisUnits(["Angstroms"])
        norm_int.setYLabel("Intensity")
        norm_int.setYUnits("Counts/Angstroms")
        
        if config.verbose:
            print "Normalizing data by normalization data"

        if tim is not None:
            tim.getTime(False)

        d_som3 = common_lib.div_ncerr(d_som2, norm_int)            

        if tim is not None:
            tim.getTime(msg="After normalizing data ")

        del norm_int
    else:
        d_som3 = d_som2

    del d_som2

    # Step 19: Calculate the initial energy
    if config.initial_energy is not None:
        d_som3.attr_list["Initial_Energy"] = config.initial_energy

    # Steps 20-21: Calculate the energy transfer
    if config.verbose:
        print "Calculating energy transfer"

    if tim is not None:
        tim.getTime(False)

    d_som4 = dr_lib.energy_transfer(d_som3, "DGS", "Initial_Energy",
                                    lojac=True, scale=config.lambda_ratio)
    
    if tim is not None:
        tim.getTime(msg="After calculating energy transfer ")

    del d_som3

    # Step 22: Rebin energy transfer spectra
    if config.verbose:
        print "Rebinning to final energy transfer axis"

    if tim is not None:
        tim.getTime(False)
        
    d_som5 = common_lib.rebin_axis_1D_frac(d_som4, config.E_bins.toNessiList())

    if tim is not None:
        tim.getTime(msg="After rebinning energy transfer ")

    del d_som4

    if config.dump_et_comb:
        d_som5_1 = dr_lib.sum_all_spectra(d_som5)
        hlr_utils.write_file(config.output, "text/Spec", d_som5_1,
                             output_ext="et",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="combined energy transfer information")

        del d_som5_1

    # Get the corner geometry information
    if config.verbose:
        print "Reading in corner geometry information"
        
    if tim is not None:
        tim.getTime(False)
        
    corner_angles = hlr_utils.get_corner_geometry(config.corner_geom)

    if tim is not None:
        tim.getTime(msg="After reading in corner geometry information ")

    if config.make_spe:
        d_som5.attr_list["corner_geom"] = corner_angles

        hlr_utils.write_file(config.output, "text/PHX", d_som5,
                             output_ext="phx",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="PHX information")

        hlr_utils.write_file(config.output, "text/PAR", d_som5,
                             output_ext="par",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="PAR information")

        hlr_utils.write_file(config.output, "text/SPE", d_som5,
                             output_ext="spe",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="SPE information")

    # Steps 23-34: Create S(Q, E) distribution
    if config.verbose:
        print "Creating S(Q, E)"

    if tim is not None:
        tim.getTime(False)
        
    d_som5_2 = dr_lib.create_E_vs_Q_dgs(d_som5,
                                        config.initial_energy.toValErrTuple(),
                                        config.Q_bins.toNessiList(),
                                        corner_angles=corner_angles,
                                        split=config.split,
                                        configure=config,
                                        timer=tim)

    # Writing 2D DAVE file
    if not config.split:
        hlr_utils.write_file(config.output, "text/Dave2d", d_som5_2,
                             output_ext="sqe",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="S(Q,E)")

        hlr_utils.write_file(config.output, "application/x-RedNxs", d_som5_2,
                             output_ext="nxs",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             extra_tag="sqe",
                             getsom_kwargs={"entry_name": "sqe"},
                             message="NeXus S(Q,E)")
                                               
    if tim is not None:
        tim.getTime(msg="After calculating S(Q,E) spectrum ")    

    del d_som5_2

    if config.qmesh:
        # Steps 23-27,35-36: Create S(Qvec, E) distribution
        if config.verbose:
            print "Creating S(Qvec, E)"

        if tim is not None:
            tim.getTime(False)
        
        dr_lib.create_Qvec_vs_E_dgs(d_som5,
                                    config.initial_energy.toValErrTuple(),
                                    config, corner_angles=corner_angles,
                                    make_fixed=config.fixed,
                                    output=config.output,
                                    timer=tim)
        
        if tim is not None:
            tim.getTime(msg="After calculating final spectrum ")    

    # Write out RMD file
    d_som5.attr_list["config"] = config

    hlr_utils.write_file(config.output, "text/rmd", d_som5,
                         output_ext="rmd",
                         data_ext=config.ext_replacement,         
                         path_replacement=config.path_replacement,
                         verbose=config.verbose,
                         message="metadata")
    
    if tim is not None:
        tim.setOldTime(old_time)
        tim.getTime(msg="Total Running Time")
예제 #3
0
def run(config, tim=None):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}

    @param tim: (OPTIONAL) Object that will allow the method to perform
                           timing evaluations.
    @type tim: C{sns_time.DiffTime}
    """
    import common_lib
    import dr_lib
    import DST

    if tim is not None:
        tim.getTime(False)
        old_time = tim.getOldTime()

    if config.data is None:
        raise RuntimeError("Need to pass a data filename to the driver "\
                           +"script.")

    # Read in geometry if one is provided
    if config.inst_geom is not None:
        if config.verbose:
            print "Reading in instrument geometry file"
            
        inst_geom_dst = DST.getInstance("application/x-NxsGeom",
                                        config.inst_geom)
    else:
        inst_geom_dst = None

    # Perform early background subtraction if the hwfix flag is used
    if config.hwfix:
        if not config.mc:
            so_axis = "time_of_flight"
        else:
            so_axis = "Time_of_Flight"
        
        bkg_som0 = dr_lib.add_files(config.back,
                                    Data_Paths=config.data_paths.toPath(),
                                    SO_Axis=so_axis,
                                    Signal_ROI=config.roi_file,
                                    dataset_type="background",
                                    Verbose=config.verbose, Timer=tim)

        bkg_som = dr_lib.fix_bin_contents(bkg_som0)
        del bkg_som0
    else:
        bkg_som = None

    # Perform Steps 1-15 on sample data
    d_som1 = dr_lib.process_igs_data(config.data, config, timer=tim,
                                     inst_geom_dst=inst_geom_dst,
                                     tib_const=config.tib_data_const,
                                     bkg_som=bkg_som)

    # Perform Steps 1-15 on empty can data
    if config.ecan is not None:
        e_som1 = dr_lib.process_igs_data(config.ecan, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="empty_can",
                                         tib_const=config.tib_ecan_const,
                                         bkg_som=bkg_som)
    else:
        e_som1 = None

    # Perform Steps 1-15 on normalization data            
    if config.norm is not None:
        n_som1 = dr_lib.process_igs_data(config.norm, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="normalization",
                                         tib_const=config.tib_norm_const,
                                         bkg_som=bkg_som)
    else:
        n_som1 = None

    # Perform Steps 1-15 on background data
    if config.back is not None:
        b_som1 = dr_lib.process_igs_data(config.back, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="background",
                                         tib_const=config.tib_back_const,
                                         bkg_som=bkg_som)
    else:
        b_som1 = None

    # Perform Step 1-15 on direct scattering background data
    if config.dsback is not None:
        ds_som1 = dr_lib.process_igs_data(config.dsback, config, timer=tim,
                                          inst_geom_dst=inst_geom_dst,
                                          tib_const=config.tib_dsback_const,
                                          dataset_type="dsbackground",
                                          bkg_som=bkg_som)

        # Note: time_zero_slope MUST be a tuple
        if config.time_zero_slope is not None:
            ds_som1.attr_list["Time_zero_slope"] = \
                                      config.time_zero_slope.toValErrTuple()

        # Note: time_zero_offset MUST be a tuple
        if config.time_zero_offset is not None:
            ds_som1.attr_list["Time_zero_offset"] = \
                                      config.time_zero_offset.toValErrTuple()
        
        # Step 16: Linearly interpolate TOF elastic range in direct scattering
        #          background data

        # First convert TOF elastic range to appropriate pixel initial
        # wavelengths
        if config.verbose:
            print "Determining initial wavelength range for elastic line"

        if tim is not None:
            tim.getTime(False)
        
        if config.tof_elastic is None:
            # Units are in microseconds
            tof_elastic_range = (140300, 141300)
        else:
            tof_elastic_range = config.tof_elastic
        
        ctof_elastic_low = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[0], 0.0),
               ds_som1)
        
        ctof_elastic_high = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[1], 0.0),
               ds_som1)
        
        ctof_elastic_range = [(ctof_elastic_low[i][0], ctof_elastic_high[i][0])
                              for i in xrange(len(ctof_elastic_low))]

        if tim is not None:
            tim.getTime(msg="After calculating initial wavelength range for "\
                        +"elastic line ")

        del ctof_elastic_low, ctof_elastic_high

        if config.split:
            lambda_filter = [(d_som1[i].axis[0].val[0],
                              d_som1[i].axis[0].val[-1])
                             for i in xrange(len(d_som1))]
        else:
            lambda_filter = None

        # Now interpolate spectra between TOF elastic range (converted to
        # initial wavelength)
        if config.verbose:
            print "Linearly interpolating direct scattering spectra"

        if tim is not None:
            tim.getTime(False)
            
        ds_som2 = dr_lib.lin_interpolate_spectra(ds_som1, ctof_elastic_range,
                                                 filter_axis=lambda_filter)

        if tim is not None:
            tim.getTime(msg="After linearly interpolating direct scattering "\
                        +"spectra ")

        if config.dump_dslin:
            ds_som2_1 = dr_lib.sum_all_spectra(ds_som2,\
                                  rebin_axis=config.lambda_bins.toNessiList())

            hlr_utils.write_file(config.output, "text/Spec", ds_som2_1,
                                 output_ext="lin",
                                 data_ext=config.ext_replacement,    
                                 path_replacement=config.path_replacement,
                                 verbose=config.verbose,
                                 message="dsbackground linear interpolation")
            del ds_som2_1
        
        del ds_som1
    else:
        ds_som2 = None

    if inst_geom_dst is not None:
        inst_geom_dst.release_resource()

    # Steps 17-18: Subtract background spectrum from sample spectrum
    if config.dsback is None:
        back_som = b_som1
        bkg_type = "background"
    else:
        back_som = ds_som2
        bkg_type = "dsbackground"
    d_som2 = dr_lib.subtract_bkg_from_data(d_som1, back_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2=bkg_type,
                                           scale=config.scale_bs)

    if config.dsback is not None:
        del ds_som2 

    # Step 19: Zero region outside TOF elastic for background for empty can
    if config.dsback is None:
        bcs_som = b_som1
        cs_som = e_som1
    else:
        if config.verbose and b_som1 is not None:
            print "Zeroing background spectra"

        if tim is not None and b_som1 is not None:
            tim.getTime(False)
            
        bcs_som = dr_lib.zero_spectra(b_som1, ctof_elastic_range)

        if tim is not None and b_som1 is not None:
            tim.getTime(msg="After zeroing background spectra")


        if config.verbose and e_som1 is not None:
            print "Zeroing empty can spectra"

        if tim is not None and e_som1 is not None:
            tim.getTime(False)
            
        cs_som = dr_lib.zero_spectra(e_som1, ctof_elastic_range)

        if tim is not None and e_som1 is not None:
            tim.getTime(msg="After zeroing empty can spectra")
            
        del ctof_elastic_range

    # Steps 20-21: Subtract background spectrum from empty can spectrum    
    e_som2 = dr_lib.subtract_bkg_from_data(cs_som, bcs_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data-empty_can",
                                           dataset2="background",
                                           scale=config.scale_bcs)

    # Steps 22-23: Subtract background spectrum from empty can spectrum for
    #              normalization

    try:
        config.pre_norm
    except AttributeError:
        config.pre_norm = False

    if not config.pre_norm:
        e_som3 = dr_lib.subtract_bkg_from_data(e_som1, b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="norm-empty_can",
                                               dataset2="background",
                                               scale=config.scale_bcn)
    else:
        e_som3 = None

    # Steps 24-25: Subtract background spectrum from normalization spectrum
    if not config.pre_norm:
        n_som2 = dr_lib.subtract_bkg_from_data(n_som1, b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="background",
                                               scale=config.scale_bn)
    else:
        n_som2 = n_som1

    del b_som1, e_som1, bcs_som, cs_som

    # Steps 26-27: Subtract empty can spectrum from sample spectrum    
    d_som3 = dr_lib.subtract_bkg_from_data(d_som2, e_som2,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="empty_can",
                                           scale=config.scale_cs)

    del d_som2, e_som2
    
    # Steps 28-29: Subtract empty can spectrum from normalization spectrum
    if not config.pre_norm:
        n_som3 = dr_lib.subtract_bkg_from_data(n_som2, e_som3,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="empty_can",
                                               scale=config.scale_cn)
    else:
        n_som3 = n_som2

    del n_som2, e_som3

    # Step 30-31: Integrate normalization spectra
    if config.verbose and n_som3 is not None and not config.pre_norm:
        print "Integrating normalization spectra"

    if not config.pre_norm:
        norm_int = dr_lib.integrate_spectra(n_som3, start=config.norm_start,
                                            end=config.norm_end, norm=True)
    else:
        norm_int = n_som3

    del n_som3
        
    # Step 32: Normalize data by integrated values
    if config.verbose and norm_int is not None:
        print "Normalizing data by normalization data"

    if norm_int is not None:
        d_som4 = common_lib.div_ncerr(d_som3, norm_int)
    else:
        d_som4 = d_som3

    if norm_int is not None:
        if tim is not None:
            tim.getTime(msg="After normalizing data ")

    del d_som3, norm_int

    if config.dump_norm:
        if tim is not None:
            tim.getTime(False)

        hlr_utils.write_file(config.output, "text/Spec", d_som4,
                             output_ext="wvn",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="wavelength (vanadium norm) information")

        if tim is not None:
            tim.getTime(msg="After writing wavelength (vanadium norm) info ")

    # Steps 33 to end: Creating S(Q,E)
    if config.Q_bins is not None:
        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_E_vs_Q_igs(d_som4,
                                          config.E_bins.toNessiList(),
                                          config.Q_bins.toNessiList(),
                                          so_id="Full Detector",
                                          y_label="counts",
                                          y_units="counts / (ueV * A^-1)",
                                          x_labels=["Q transfer",
                                                    "energy transfer"],
                                          x_units=["1/Angstroms","ueV"],
                                          split=config.split,
                                          Q_filter=False,
                                          configure=config)
        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")

        del d_som4
        
    # Steps 33 to 36: Create S(-cos(polar), E)
    elif config.ncospol_bins is not None:
        if config.verbose:
            print "Convert wavelength to energy transfer"

        if tim is not None:
            tim.getTime(False)

        d_som4a = dr_lib.energy_transfer(d_som4, "IGS", "Wavelength_final",
                                         sa_norm=True, scale=True,
                                         change_units=True)

        if tim is not None:
            tim.getTime(msg="After wavelength to energy transfer conversion ")

        del d_som4

        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_param_vs_Y(d_som4a, "polar",
                                        "negcos_param_array",
                                        config.ncospol_bins.toNessiList(),
                                        rebin_axis=config.E_bins.toNessiList(),
                                        y_label="counts",
                                        y_units="counts / ueV",
                                        x_labels=["-cos(polar)",
                                                  "Energy Transfer"], 
                                        x_units=["", "ueV"])

        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")        
    
    # If rescaling factor present, rescale the data
    if config.rescale_final is not None and not config.split:
        d_som6 = common_lib.mult_ncerr(d_som5, (config.rescale_final, 0.0))
    else:
        d_som6 = d_som5

    if tim is None:
        old_time = None

    if not __name__ == "amorphous_reduction_sqe":
        del d_som5
        __write_output(d_som6, config, tim, old_time)
    else:
        if config.create_output:
            del d_som5
            __write_output(d_som6, config, tim, old_time)
        else:
            return d_som6
예제 #4
0
def run(config, tim=None):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}

    @param tim: (OPTIONAL) Object that will allow the method to perform
                           timing evaluations.
    @type tim: C{sns_time.DiffTime}
    """
    import common_lib
    import dr_lib
    import DST

    if tim is not None:
        tim.getTime(False)
        old_time = tim.getOldTime()

    if config.data is None:
        raise RuntimeError("Need to pass a data filename to the driver "\
                           +"script.")

    # Read in geometry if one is provided
    if config.inst_geom is not None:
        if config.verbose:
            print "Reading in instrument geometry file"

        inst_geom_dst = DST.getInstance("application/x-NxsGeom",
                                        config.inst_geom)
    else:
        inst_geom_dst = None

    # Perform early background subtraction if the hwfix flag is used
    if config.hwfix:
        if not config.mc:
            so_axis = "time_of_flight"
        else:
            so_axis = "Time_of_Flight"

        bkg_som0 = dr_lib.add_files(config.back,
                                    Data_Paths=config.data_paths.toPath(),
                                    SO_Axis=so_axis,
                                    Signal_ROI=config.roi_file,
                                    dataset_type="background",
                                    Verbose=config.verbose,
                                    Timer=tim)

        bkg_som = dr_lib.fix_bin_contents(bkg_som0)
        del bkg_som0
    else:
        bkg_som = None

    # Perform Steps 1-15 on sample data
    d_som1 = dr_lib.process_igs_data(config.data,
                                     config,
                                     timer=tim,
                                     inst_geom_dst=inst_geom_dst,
                                     tib_const=config.tib_data_const,
                                     bkg_som=bkg_som)

    # Perform Steps 1-15 on empty can data
    if config.ecan is not None:
        e_som1 = dr_lib.process_igs_data(config.ecan,
                                         config,
                                         timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="empty_can",
                                         tib_const=config.tib_ecan_const,
                                         bkg_som=bkg_som)
    else:
        e_som1 = None

    # Perform Steps 1-15 on normalization data
    if config.norm is not None:
        n_som1 = dr_lib.process_igs_data(config.norm,
                                         config,
                                         timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="normalization",
                                         tib_const=config.tib_norm_const,
                                         bkg_som=bkg_som)
    else:
        n_som1 = None

    # Perform Steps 1-15 on background data
    if config.back is not None:
        b_som1 = dr_lib.process_igs_data(config.back,
                                         config,
                                         timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="background",
                                         tib_const=config.tib_back_const,
                                         bkg_som=bkg_som)
    else:
        b_som1 = None

    # Perform Step 1-15 on direct scattering background data
    if config.dsback is not None:
        ds_som1 = dr_lib.process_igs_data(config.dsback,
                                          config,
                                          timer=tim,
                                          inst_geom_dst=inst_geom_dst,
                                          tib_const=config.tib_dsback_const,
                                          dataset_type="dsbackground",
                                          bkg_som=bkg_som)

        # Note: time_zero_slope MUST be a tuple
        if config.time_zero_slope is not None:
            ds_som1.attr_list["Time_zero_slope"] = \
                                      config.time_zero_slope.toValErrTuple()

        # Note: time_zero_offset MUST be a tuple
        if config.time_zero_offset is not None:
            ds_som1.attr_list["Time_zero_offset"] = \
                                      config.time_zero_offset.toValErrTuple()

        # Step 16: Linearly interpolate TOF elastic range in direct scattering
        #          background data

        # First convert TOF elastic range to appropriate pixel initial
        # wavelengths
        if config.verbose:
            print "Determining initial wavelength range for elastic line"

        if tim is not None:
            tim.getTime(False)

        if config.tof_elastic is None:
            # Units are in microseconds
            tof_elastic_range = (140300, 141300)
        else:
            tof_elastic_range = config.tof_elastic

        ctof_elastic_low = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[0], 0.0),
               ds_som1)

        ctof_elastic_high = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[1], 0.0),
               ds_som1)

        ctof_elastic_range = [(ctof_elastic_low[i][0], ctof_elastic_high[i][0])
                              for i in xrange(len(ctof_elastic_low))]

        if tim is not None:
            tim.getTime(msg="After calculating initial wavelength range for "\
                        +"elastic line ")

        del ctof_elastic_low, ctof_elastic_high

        if config.split:
            lambda_filter = [(d_som1[i].axis[0].val[0],
                              d_som1[i].axis[0].val[-1])
                             for i in xrange(len(d_som1))]
        else:
            lambda_filter = None

        # Now interpolate spectra between TOF elastic range (converted to
        # initial wavelength)
        if config.verbose:
            print "Linearly interpolating direct scattering spectra"

        if tim is not None:
            tim.getTime(False)

        ds_som2 = dr_lib.lin_interpolate_spectra(ds_som1,
                                                 ctof_elastic_range,
                                                 filter_axis=lambda_filter)

        if tim is not None:
            tim.getTime(msg="After linearly interpolating direct scattering "\
                        +"spectra ")

        if config.dump_dslin:
            ds_som2_1 = dr_lib.sum_all_spectra(ds_som2,\
                                  rebin_axis=config.lambda_bins.toNessiList())

            hlr_utils.write_file(config.output,
                                 "text/Spec",
                                 ds_som2_1,
                                 output_ext="lin",
                                 data_ext=config.ext_replacement,
                                 path_replacement=config.path_replacement,
                                 verbose=config.verbose,
                                 message="dsbackground linear interpolation")
            del ds_som2_1

        del ds_som1
    else:
        ds_som2 = None

    if inst_geom_dst is not None:
        inst_geom_dst.release_resource()

    # Steps 17-18: Subtract background spectrum from sample spectrum
    if config.dsback is None:
        back_som = b_som1
        bkg_type = "background"
    else:
        back_som = ds_som2
        bkg_type = "dsbackground"
    d_som2 = dr_lib.subtract_bkg_from_data(d_som1,
                                           back_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2=bkg_type,
                                           scale=config.scale_bs)

    if config.dsback is not None:
        del ds_som2

    # Step 19: Zero region outside TOF elastic for background for empty can
    if config.dsback is None:
        bcs_som = b_som1
        cs_som = e_som1
    else:
        if config.verbose and b_som1 is not None:
            print "Zeroing background spectra"

        if tim is not None and b_som1 is not None:
            tim.getTime(False)

        bcs_som = dr_lib.zero_spectra(b_som1, ctof_elastic_range)

        if tim is not None and b_som1 is not None:
            tim.getTime(msg="After zeroing background spectra")

        if config.verbose and e_som1 is not None:
            print "Zeroing empty can spectra"

        if tim is not None and e_som1 is not None:
            tim.getTime(False)

        cs_som = dr_lib.zero_spectra(e_som1, ctof_elastic_range)

        if tim is not None and e_som1 is not None:
            tim.getTime(msg="After zeroing empty can spectra")

        del ctof_elastic_range

    # Steps 20-21: Subtract background spectrum from empty can spectrum
    e_som2 = dr_lib.subtract_bkg_from_data(cs_som,
                                           bcs_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data-empty_can",
                                           dataset2="background",
                                           scale=config.scale_bcs)

    # Steps 22-23: Subtract background spectrum from empty can spectrum for
    #              normalization

    try:
        config.pre_norm
    except AttributeError:
        config.pre_norm = False

    if not config.pre_norm:
        e_som3 = dr_lib.subtract_bkg_from_data(e_som1,
                                               b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="norm-empty_can",
                                               dataset2="background",
                                               scale=config.scale_bcn)
    else:
        e_som3 = None

    # Steps 24-25: Subtract background spectrum from normalization spectrum
    if not config.pre_norm:
        n_som2 = dr_lib.subtract_bkg_from_data(n_som1,
                                               b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="background",
                                               scale=config.scale_bn)
    else:
        n_som2 = n_som1

    del b_som1, e_som1, bcs_som, cs_som

    # Steps 26-27: Subtract empty can spectrum from sample spectrum
    d_som3 = dr_lib.subtract_bkg_from_data(d_som2,
                                           e_som2,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="empty_can",
                                           scale=config.scale_cs)

    del d_som2, e_som2

    # Steps 28-29: Subtract empty can spectrum from normalization spectrum
    if not config.pre_norm:
        n_som3 = dr_lib.subtract_bkg_from_data(n_som2,
                                               e_som3,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="empty_can",
                                               scale=config.scale_cn)
    else:
        n_som3 = n_som2

    del n_som2, e_som3

    # Step 30-31: Integrate normalization spectra
    if config.verbose and n_som3 is not None and not config.pre_norm:
        print "Integrating normalization spectra"

    if not config.pre_norm:
        norm_int = dr_lib.integrate_spectra(n_som3,
                                            start=config.norm_start,
                                            end=config.norm_end,
                                            norm=True)
    else:
        norm_int = n_som3

    del n_som3

    # Step 32: Normalize data by integrated values
    if config.verbose and norm_int is not None:
        print "Normalizing data by normalization data"

    if norm_int is not None:
        d_som4 = common_lib.div_ncerr(d_som3, norm_int)
    else:
        d_som4 = d_som3

    if norm_int is not None:
        if tim is not None:
            tim.getTime(msg="After normalizing data ")

    del d_som3, norm_int

    if config.dump_norm:
        if tim is not None:
            tim.getTime(False)

        hlr_utils.write_file(config.output,
                             "text/Spec",
                             d_som4,
                             output_ext="wvn",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="wavelength (vanadium norm) information")

        if tim is not None:
            tim.getTime(msg="After writing wavelength (vanadium norm) info ")

    # Steps 33 to end: Creating S(Q,E)
    if config.Q_bins is not None:
        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_E_vs_Q_igs(
            d_som4,
            config.E_bins.toNessiList(),
            config.Q_bins.toNessiList(),
            so_id="Full Detector",
            y_label="counts",
            y_units="counts / (ueV * A^-1)",
            x_labels=["Q transfer", "energy transfer"],
            x_units=["1/Angstroms", "ueV"],
            split=config.split,
            Q_filter=False,
            configure=config)
        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")

        del d_som4

    # Steps 33 to 36: Create S(-cos(polar), E)
    elif config.ncospol_bins is not None:
        if config.verbose:
            print "Convert wavelength to energy transfer"

        if tim is not None:
            tim.getTime(False)

        d_som4a = dr_lib.energy_transfer(d_som4,
                                         "IGS",
                                         "Wavelength_final",
                                         sa_norm=True,
                                         scale=True,
                                         change_units=True)

        if tim is not None:
            tim.getTime(msg="After wavelength to energy transfer conversion ")

        del d_som4

        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_param_vs_Y(
            d_som4a,
            "polar",
            "negcos_param_array",
            config.ncospol_bins.toNessiList(),
            rebin_axis=config.E_bins.toNessiList(),
            y_label="counts",
            y_units="counts / ueV",
            x_labels=["-cos(polar)", "Energy Transfer"],
            x_units=["", "ueV"])

        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")

    # If rescaling factor present, rescale the data
    if config.rescale_final is not None and not config.split:
        d_som6 = common_lib.mult_ncerr(d_som5, (config.rescale_final, 0.0))
    else:
        d_som6 = d_som5

    if tim is None:
        old_time = None

    if not __name__ == "amorphous_reduction_sqe":
        del d_som5
        __write_output(d_som6, config, tim, old_time)
    else:
        if config.create_output:
            del d_som5
            __write_output(d_som6, config, tim, old_time)
        else:
            return d_som6