def __getitem__(self, index): img_path = os.path.join(self.data_dir, self.data.iloc[index, 0]) img = utils.bgr2rgb(cv2.imread(str(img_path))) try: img_path_2 = os.path.join(self.data_dir, self.data.iloc[index, 1]) target = utils.bgr2rgb(cv2.imread(str(img_path_2))) except: target = utils.bgr2rgb(cv2.imread(str(img_path))) if self.input_transforms: img = self.input_transforms(image=img)['image'] if self.target_transforms: target = self.target_transforms(image=target)['image'] return img, target
def __getitem__(self, index): img_path = os.path.join(self.data_dir, self.data.iloc[index, 0]) if self.channels == 3: img = utils.bgr2rgb(cv2.imread(str(img_path))) else: img = cv2.imread(str(img_path), 0) # img = Image.open(img_path) # if self.channels == 3: # img = img.convert('RGB') # else: # img = img.convert('L') y = self.data.iloc[index, 1] if self.minorities and self.bal_tfms: if y in self.minorities: if hasattr(self.bal_tfms, 'transforms'): for tr in self.bal_tfms.transforms: tr.p = self.diffs[y] l = [self.bal_tfms] l.extend(self.transforms_) self.tfms = albu.Compose(l) else: for t in self.bal_tfms: t.p = self.diffs[y] self.transforms_[1:1] = self.bal_tfms # self.tfms = transforms.Compose(self.transforms_) self.tfms = albu.Compose(self.transforms_) # print(self.tfms) else: # self.tfms = transforms.Compose(self.transforms_) self.tfms = albu.Compose(self.transforms_) else: # self.tfms = transforms.Compose(self.transforms_) self.tfms = albu.Compose(self.transforms_) # x = self.tfms(img) x = self.tfms(image=img)['image'] if self.channels == 1: x = x.unsqueeze(0) if self.seg: mask = Image.open(self.data.iloc[index, 1]) seg_tfms = albu.Compose([self.tfms.transforms[0]]) y = torch.from_numpy(np.array(seg_tfms(mask))).long().squeeze(0) # if self.obj: # s = x.size()[1] # if isinstance(s,tuple): # s = s[0] # row_scale = s/img.size[0] # col_scale = s/img.size[1] # y = rescale_bbox(y,row_scale,col_scale) # y.squeeze_() # y2 = self.data.iloc[index, 2] # y = (y,y2) return (x, y, self.data.iloc[index, 0])
def __getitem__(self, index): frames = utils.path_list(os.path.join(self.data_dir, self.data.iloc[index, 0]), sort=True) img_path = frames[self.n_frames - 1] try: img_ = utils.bgr2rgb(cv2.imread(str(img_path))) except: print(img_path) if len(self.pre_transforms.transforms.transforms) > 0: img_ = self.pre_transforms(image=img_)['image'] target = self.target_transforms(image=img_)['image'] if len(self.pre_input_transforms.transforms.transforms) > 0: img_ = self.pre_input_transforms(image=img_)['image'] # img_ = self.downscale_transforms(image=img_)['image'] img = self.input_transforms(image=img_)['image'] resized_target = self.resized_target_transforms(image=img_)['image'] seq = list(reversed(frames[:-1])) neighbours = [] for img_path in seq: try: img_ = utils.bgr2rgb(cv2.imread(str(img_path))) except: print(img_path) if len(self.pre_transforms.transforms.transforms) > 0: img_ = self.pre_transforms(image=img_)['image'] if len(self.pre_input_transforms.transforms.transforms) > 0: img_ = self.pre_input_transforms(image=img_)['image'] neighbours.append(self.input_transforms(image=img_)['image']) flow = [ utils.to_tensor( self.get_flow(utils.tensor_to_img(img), utils.tensor_to_img(j))) for j in neighbours ] return img, target, neighbours, flow, resized_target
def __getitem__(self, index): img_path = os.path.join(self.data_dir, self.data.iloc[index, 0]) try: img_ = utils.bgr2rgb(cv2.imread(str(img_path))) except: print(img_path) if len(self.pre_transforms.transforms.transforms) > 0: img_ = self.pre_transforms(image=img_)['image'] target = self.target_transforms(image=img_)['image'] if len(self.pre_input_transforms.transforms.transforms) > 0: img_ = self.pre_input_transforms(image=img_)['image'] # img_ = self.downscale_transforms(image=img_)['image'] img = self.input_transforms(image=img_)['image'] resized_target = self.resized_target_transforms(image=img_)['image'] return img, target, resized_target
def __getitem__(self, index): img_path = os.path.join(self.data_dir, self.data.iloc[index, 0]) if self.channels == 3: img = utils.bgr2rgb(cv2.imread(str(img_path))) else: img = cv2.imread(str(img_path), 0) # img = Image.open(img_path) # if self.channels == 3: # img = img.convert('RGB') # else: # img = img.convert('L') y1, y2 = self.data.iloc[index, 1], self.data.iloc[index, 2] self.tfms = albu.Compose(self.transforms_) x = self.tfms(image=img)['image'].unsqueeze(0) # self.tfms = transforms.Compose(self.transforms_) # x = self.tfms(img) return (x, y1, y2)