def test_reg_supervised_similar_clustering(): new_data, historical_data, column_names, target_name = generate_classification_data_and_models( ) test_suite = structural_tests.StructuralData(new_data, historical_data, column_names, target_name) try: absolute_distance = 2 test_suite.cls_supervised_similar_clustering(absolute_distance) assert True except: assert False
def test_mutual_info_kmeans_scorer(): new_data, historical_data = generate_unsupervised_data() columns = [ "similar_normal", "different_normal", "similar_gamma", "different_gamma" ] target = '' test_suite = structural_tests.StructuralData(new_data, historical_data, columns, target) try: min_similarity = 0.5 test_suite.mutual_info_kmeans_scorer(min_similarity) assert True except: assert False