def main(): print("Shorest Job First...") # Sorting the dictionary in terms of each jobs length # drive function reads in input from file and turns it into dictionary for v in sorted(drive(), key=lambda x: x[1][1]): print("Running task = {} {} {} for {} units.\n".format( v[0], v[1][0], v[1][1], v[1][1]))
def main(): print("Scheduling priority round robin...\n") a = [] # slice list for v in sorted(drive(), key=lambda x: x[1][0]): slice = v[1][1] a.append(slice) # add time to list #sort dic dictionary by priority dic = sorted(drive(), key=lambda x: x[1][0]) # pass list, dictionary and indicator to robin function # indicator tells the function if it is its first time being passed into the #robin function # 0 indicates its first time robin(a, dic, 0) while sum(a) != 0: # 1 indicates its not thie first time its been passed to robin robin(a, dic, 1)
def step(): x, y, theta = io.getPosition() robot.slimeX.append(x) robot.slimeY.append(y) # the following lines compute the robot's current position and angle currentPoint = util.Point(x,y).add(robot.initialLocation) currentAngle = util.fixAnglePlusMinusPi(theta) fv, rv = driver.drive(robot.path, currentPoint, currentAngle) io.setForward(fv) io.setRotational(rv)
def on_step(): x, y, theta = io.get_position(cheat=True) robot.slime_x.append(x) robot.slime_y.append(y) checkoff.update(globals()) # the following lines compute the robot's current position and angle current_point = util.Point(x,y).add(robot.initial_location) current_angle = theta forward_v, rotational_v = drive(robot.path, current_point, current_angle) io.set_forward(forward_v) io.set_rotational(rotational_v)
def floodResult(): if request.method == 'POST': if len(request.form['DATE']) == 0: return redirect(url_for('floodHome')) else: user_date = request.form['DATE'] river = request.form['SEL'] results_dict = driver.drive(river, user_date) print("-----------", type(results_dict), "----------") Table = [] for key, value in results_dict.items(): Table.append(value) return render_template('flood_result.html', result=Table) else: return redirect(url_for('floodHome'))
def predict(): user_date = request.form['Date'] river = request.form['River'] print(river, user_date) results_dict, classification_metrics, data, fut = driver.drive( river, user_date) if fut is 0: data["Date"] = data["Date"].astype(str) results_dict["Data"] = data.to_dict() results_dict["Classification Report"] = classification_metrics response = app.response_class(response=json.dumps(results_dict), mimetype='application/json') return response
def test_e2e(): opts = { 'PLAYERS': [(10, 0), (0, 1), (0, 2)], 'N_CONNECTIONS': 3, 'TIME_TO_SIM': 2, 'MEAN_PROP_TIME': 0.1, 'STD_PROP_TIME': 0.001, 'SEED': 20, 'GRAPH': False } os.system('./run_server.sh &') time.sleep(5) # allow the server to boot up sol = driver.drive(opts) correctHashes = player.Player.correctHashes for i in sol.players: assert len(i.blockchain) > 0 for j in range(len(i.blockchain)): assert i.blockchain[j] == correctHashes[j]
def floodResult(): if request.method == 'POST': if len(request.form['DATE']) == 0: return redirect(url_for('floodHome')) else: user_date = request.form['DATE'] river = request.form['SEL'] # print("##3#######",user_date,"#####",river,"#############") # print(type(user_date)) # print(type(river)) results_dict = driver.drive(river, user_date) # results_dict={'Mse':0.5, # 'discharge':1400} print("-----------", type(results_dict), "----------") Table = [] for key, value in results_dict.items(): # temp = [] # temp.extend([key,value]) #Note that this will change depending on the structure of your dictionary Table.append(value) return render_template('flood_result.html', result=Table) else: return redirect(url_for('floodHome'))
def floodResult(): if request.method == 'POST': # pdb.set_trace() if len(request.form['DATE']) == 0: flash("Please Enter Data!!") return redirect(url_for('floodHome')) else: user_date = request.form['DATE'] river = request.form['SEL'] results_dict = driver.drive(river, user_date) # results_dict={'Mse':0.5, # 'discharge':1400} print("-----------", type(results_dict), "----------") Table = [] key: object for key, value in results_dict.items(): #df = pd.DataFrame.from_dict(data) #temp = [] #temp.extend([key, value]) Table.append(value) return render_template('flood_result.html', result=Table) else: return redirect(url_for('floodHome'))
def main(argv): volume = DetectorVolume(1000.0, 1000.0) wirePitches = [5.0, 5.0, 5.0] angles = driver.generateAngles(len(wirePitches)) numbersOfBlobs = [3] alphas = [0.01] numberOfIterations = 100 for numberOfBlobs in numbersOfBlobs: for alpha in alphas: c1 = root.TCanvas("RecoRateCanvas", "RecoRateCanvas", 200, 10, 700, 500) correctFractions = root.TH1F("correctFractions", ("Correct Identification Fraction"), 100, -0.1, 1.1) fakeFractions = root.TH1F("fakeFractions", ("Fake Identification Fraction"), 100, -0.1, 1.1) for i in range(numberOfIterations): blobs, cells, channelList, geometryMatrix, recoWireMatrix, recoCellMatrix, trueCellMatrix = driver.drive( volume, wirePitches, angles, numberOfBlobs, alpha) recoCells = list( map(lambda x: not math.isclose(x, 0, rel_tol=1e-5), recoCellMatrix)) trueCells = list( map(lambda x: not math.isclose(x, 0, rel_tol=1e-5), trueCellMatrix)) correctID = sum( bool(x[0]) and bool(x[1]) for x in zip(trueCells, recoCells)) fakeID = sum(not bool(x[0]) and bool(x[1]) for x in zip(trueCells, recoCells)) correctFraction = correctID / len(blobs) fakeFraction = fakeID / len(blobs) correctFractions.Fill(correctFraction) fakeFractions.Fill(fakeFraction) correctFractions.SetTitle("") correctFractions.GetYaxis().SetTitleSize(0.04) correctFractions.GetYaxis().SetTitleOffset(1.2) correctFractions.GetYaxis().SetLabelSize(0.04) correctFractions.GetXaxis().SetTitleSize(0.04) correctFractions.GetXaxis().SetTitleOffset(1) correctFractions.GetXaxis().SetLabelSize(0.04) correctFractions.SetLineWidth(2) fakeFractions.SetLineWidth(2) # correctFractions.SetLineStyle(2) fakeFractions.SetLineStyle(2) correctFractions.SetLineColor(root.kBlue) fakeFractions.SetLineColor(root.kRed) root.gStyle.SetOptStat(0) correctFractions.Draw("HIST") fakeFractions.Draw("HIST SAMES") root.gApplication.Run()
--nconnections=<ncons> number of connections per person in the network [default: 3] --timetosim=<timetosim> virtual time in seconds to simulate the system for [default: 10] --meanproptime=<meanproptime> mean propagation time of messages (latency) [default: 1] --stdproptime=<stdproptime> std deviation of the propagation time of messages [default: 0.1] --seed=<seed> random seed [default: 42] -g generate graph animation --help show this """ import random import grpc from docopt import docopt import driver import player import solver if __name__ == "__main__": args = docopt(__doc__) opts = { "PLAYERS": eval(args["--players"]), "N_CONNECTIONS": int(args["--nconnections"]), "TIME_TO_SIM": int(args["--timetosim"]), "MEAN_PROP_TIME": float(args["--meanproptime"]), "STD_PROP_TIME": float(args["--stdproptime"]), "SEED": int(args["--seed"]), "GRAPH": bool(args["-g"]), } driver.drive(opts)
def main(): print("Scheduling priority...\n") for v in sorted(drive(), key=lambda x: x[1][0]): print("Running task = {} {} {} for {} units.\n".format( v[0], v[1][0], v[1][1], v[1][1]))
s.listen(10) # total number of stops while True: # continue to prompt until correct stop number has been entered while True: conn, addr = s.accept() buffer = conn.recv(64) stopNumber = int(buffer) conn.close() if stopNumber > 0 and stopNumber < STOP_COUNT: break else: print "Invalid stop number, please try again..." # wait until cups have been placed detector.setup() # drive to stop driver.drive(stopNumber) # wait until cups have been picked up detector.dropoff() # return home driver.drive(STOP_COUNT - stopNumber) # message print "Arrived back home!!"
#a = os.path.join("India") count = 0 for i in range(len(username)): count += 1 #print(count) a = open(os.path.join(sys.argv[1],str(username[i]).replace(':','-').replace('?','-').replace('|','-').replace('/','-').replace("\\","-")+'.txt'),'w',encoding = 'utf-8') #if len(text[i]) > 1: #print(username[i]) for j in range(0,len(text[i])): #text[i][j].replace('[',' ').replace(']',' ').replace('<') new_str = re.sub('[^a-zA-Z0-9\n\.]', ' ', text[i][j]) text[i][j] = new_str lda_model=gensim.models.LdaModel.load('lda.model') id2word={} f = open("file.pkl","rb") id2word=pickle.load(f) pp=getTopicForQuery(new_str,lda_model,id2word) a.write(new_str) a.write('\n-------------------||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||---------------------------\n') #print(pp) mat[i]=pp a.close() #print(users[2]) #for i in range(len(username)): # print(mat[i]) drive(mat)
def efficiencyPurityGraph(volume, wirePitches, angles, numberOfBlobs, alphas, numberOfIterations): efficiency = array('f', len(alphas) * [0.]) purity = array('f', len(alphas) * [0.]) eventNo = 0 for pointNo, alpha in enumerate(alphas): correctSum = 0 fakeSum = 0 for i in range(numberOfIterations): blobs, cells, channelList, geometryMatrix, recoWireMatrix, recoCellMatrix, trueCellMatrix = driver.drive( volume, wirePitches, angles, numberOfBlobs, alpha) if (eventNo % 1000 == 0) or (eventNo == 0): print("Processed ", eventNo, "/", len(alphas) * numberOfIterations, " events") eventNo += 1 recoCells = list( map(lambda x: not math.isclose(x, 0, rel_tol=1e-5), recoCellMatrix)) trueCells = list( map(lambda x: not math.isclose(x, 0, rel_tol=1e-5), trueCellMatrix)) correctID = sum( bool(x[0]) and bool(x[1]) for x in zip(trueCells, recoCells)) fakeID = sum(not bool(x[0]) and bool(x[1]) for x in zip(trueCells, recoCells)) correctSum += correctID / len(blobs) fakeSum += fakeID / len(blobs) efficiency[pointNo] = correctSum / numberOfIterations purity[pointNo] = 1 - fakeSum / numberOfIterations g = root.TGraph(len(alphas), efficiency, purity) return g
--players=<players> list of tuples e.g. "[(# of players, player type), ...]"; player type 0 = honest node, 1 = failure stop, 2 = fuzz test, 3 = byzantine fault [default: [(10, 0)]] --nconnections=<ncons> number of connections per person in the network [default: 3] --timetosim=<timetosim> virtual time in seconds to simulate the system for [default: 10] --meanproptime=<meanproptime> mean propagation time of messages (latency) [default: 1] --stdproptime=<stdproptime> std deviation of the propagation time of messages [default: 0.1] --seed=<seed> random seed [default: 42] -g generate graph animation --help show this """ import random import grpc from docopt import docopt import driver import player import solver if __name__=="__main__": args = docopt(__doc__) opts = {"PLAYERS": eval(args["--players"]), "N_CONNECTIONS": int(args["--nconnections"]), "TIME_TO_SIM": int(args["--timetosim"]), "MEAN_PROP_TIME": float(args["--meanproptime"]), "STD_PROP_TIME": float(args["--stdproptime"]), "SEED": int(args["--seed"]), "GRAPH": bool(args["-g"]), } driver.drive(opts)
def main(): print("First Come First Served...") # calling drive function to read the input and turn it into a dictionary for v in drive(): print("Running task = {} {} {} for {} units\n".format( v[0], v[1][0], v[1][1], v[1][1]))