optimizer=Adam(policy_net.parameters(), lr=1e-4),
                              strategy_name=strategy_name,
                              game_name=game.name,
                              device=device,
                              status=TrainingStatus(summary_writer))
    print('Model prepared')

    # %%
    if load_checkpoint(model):
        print('Resuming')
    else:
        print('Starting fresh')

    # %%
    train(model,
          create_game,
          hyperparams,
          steps_to_train // hyperparams.game_steps_per_epoch,
          save_every=25 // episode_factor,
          validation_episodes=5)
    save_checkpoint(model)

    with create_game() as game:
        print('Running validation')
        print_validation(model, game, 10)
        print('Playing example')
        for i in range(3):
            play_example(model.exec(), game, '%04d' % i)

    print('Done.')
예제 #2
0
                              target_net=target_net,
                              input_dtype=torch.half,
                              optimizer=optimizer,
                              strategy_name=strategy_name,
                              game_name=_game.name,
                              device=device,
                              status=TrainingStatus(summary_writer))
    print('Model prepared')

    # %%
    if load_checkpoint(model):
        print('Resuming')
    else:
        print('Starting fresh')

    # %%
    train(model,
          create_game,
          hyperparams,
          steps_to_train // hyperparams.game_steps_per_epoch,
          save_every=25 // episode_factor)
    save_checkpoint(model)

    with create_game() as game:
        print('Running validation')
        print_validation(model, game, 5)
    #   print('Playing example')
    #   play_example(model.exec(), game, 'final')

    print('Done.')
예제 #3
0
def train_with(device: torch.device, steps_to_train: int,
               game_steps_per_step: int, prio_memory: bool):
    episode_factor = 5
    w = h = 84
    t = 4
    memory_size = 50000
    batch_per_game_step = 32
    batch_size = game_steps_per_step * batch_per_game_step
    hyperparams = TrainingHyperparameters(
        gamma=0.99,
        beta=linear_increase(0.01 * episode_factor),
        exploration_rate=linear_decay(0.008 * episode_factor,
                                      max_value=1.,
                                      min_value=0.01),
        batch_size=batch_size,
        game_steps_per_step=game_steps_per_step,
        copy_to_target_every=1000,
        game_steps_per_epoch=1000 * episode_factor,
        multi_step_n=4,
        warmup_rounds=500,
        init_memory_steps=1000,
        parallel_game_processes=2,
        max_batches_prefetch=10,
        states_on_device=True)

    with create_game() as _game:
        strategy_name = 'floaton-steps%d-%s' % (game_steps_per_step, 'prm'
                                                if prio_memory else 'srm')
        if prio_memory:
            memory = PrioritizedReplayMemory(memory_size)
        else:
            memory = SimpleReplayMemory(memory_size)
        policy_net = DQN_RBP(w, h, t, len(_game.actions)).to(device)
        target_net = DQN_RBP(w, h, t, len(_game.actions)).to(device)
        optimizer = Adam(policy_net.parameters(), lr=1e-4)

        summary_writer = SummaryWriter(
            'runs/%s-%s-%s' %
            (_game.name, strategy_name, datetime.now().isoformat()))
        model = LearningModel(memory=memory,
                              policy_net=policy_net,
                              target_net=target_net,
                              input_dtype=torch.float,
                              optimizer=optimizer,
                              strategy_name=strategy_name,
                              game_name=_game.name,
                              device=device,
                              status=TrainingStatus(summary_writer))
    print('%s: Model prepared' % strategy_name)

    # %%
    train(model,
          create_game,
          hyperparams,
          steps_to_train // hyperparams.game_steps_per_epoch,
          save_every=0)
    save_checkpoint(model)

    with create_game() as game:
        print('Running validation of', strategy_name)
        print_validation(model, game, 5)
    print('%s completed' % strategy_name)