def evaluation(cfg, ckpt, distributed): logger = logging.getLogger("DSSD.inference") model = build_detection_model(cfg) checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR, logger=logger) device = torch.device(cfg.MODEL.DEVICE) model.to(device) checkpointer.load(ckpt, use_latest=ckpt is None) do_evaluation(cfg, model, distributed)
def do_train(cfg, model, data_loader, optimizer, scheduler, checkpointer, device, arguments, args): logger = logging.getLogger("DSSD.trainer") logger.info("Start training ...") meters = MetricLogger() #what does this do? model.train() save_to_disk = dist_util.get_rank() == 0 # implement logging here if args.use_tensorboard and save_to_disk: import tensorboardX summary_writer = tensorboardX.SummaryWriter(log_dir=os.path.join(cfg.OUTPUT_DIR, 'tf_logs')) else: summary_writer = None max_iter = len(data_loader) start_iter = arguments["iteration"] start_training_time = time.time() end = time.time() for iteration, (images, targets, _) in enumerate(data_loader, start_iter): iteration = iteration + 1 arguments["iteration"] = iteration if iteration > start_iter + 1 or torch.__version__[:3] <= '1.1': scheduler.step() images = images.to(device) targets = targets.to(device) loss_dict = model(images, targets=targets) loss = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes loss_dict_reduced = reduce_loss_dict(loss_dict) losses_reduced = sum(loss for loss in loss_dict_reduced.values()) meters.update(total_loss=losses_reduced, **loss_dict_reduced) # main work happens here optimizer.zero_grad() loss.backward() optimizer.step() batch_time = time.time() - end end = time.time() meters.update(time=batch_time) if iteration % args.log_step == 0: eta_seconds = meters.time.global_avg * (max_iter - iteration) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) logger.info( meters.delimiter.join([ "iter: {iter:06d}", "lr: {lr:.5f}", '{meters}', "eta: {eta}", 'mem: {mem}M', ]).format( iter=iteration, lr=optimizer.param_groups[0]['lr'], meters=str(meters), eta=eta_string, mem=round(torch.cuda.max_memory_allocated() / 1024.0 / 1024.0), ) ) if summary_writer: global_step = iteration summary_writer.add_scalar('losses/total_loss', losses_reduced, global_step=global_step) for loss_name, loss_item in loss_dict_reduced.items(): summary_writer.add_scalar('losses/{}'.format(loss_name), loss_item, global_step=global_step) summary_writer.add_scalar('lr', optimizer.param_groups[0]['lr'], global_step=global_step) if iteration % args.save_step == 0: checkpointer.save("model_{:06d}".format(iteration), **arguments) if args.eval_step > 0 and iteration % args.eval_step == 0 and not iteration == max_iter: eval_results = do_evaluation(cfg, model, distributed=args.distributed, mode='val', iteration=iteration) if dist_util.get_rank() == 0 and summary_writer: for eval_result, dataset in zip(eval_results, cfg.DATASETS.VAL): write_metric(eval_result['metrics'], 'metrics/' + dataset, summary_writer, iteration) model.train() # *IMPORTANT*: change to train mode after eval. checkpointer.save("model_final", **arguments) # compute training time total_training_time = int(time.time() - start_training_time) total_time_str = str(datetime.timedelta(seconds=total_training_time)) logger.info("Total training time: {} ({:.4f} s / it)".format(total_time_str, total_training_time / max_iter)) return model
def main(): parser = argparse.ArgumentParser( description= 'DSSD: Deconvolutional Single Shot MultiBox Detector Training With PyTorch' ) parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('--log_step', default=10, type=int, help='Print logs every log_step') parser.add_argument('--save_step', default=10000, type=int, help='Save checkpoint every save_step') parser.add_argument( '--eval_step', default=10000, type=int, help='Evaluate dataset every eval_step, disabled when eval_step < 0') parser.add_argument('--use_tensorboard', default=True, type=str2bool) parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 args.num_gpus = num_gpus if torch.cuda.is_available(): # This flag allows you to enable the inbuilt cudnn auto-tuner to # find the best algorithm to use for your hardware. torch.backends.cudnn.benchmark = True if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() if cfg.OUTPUT_DIR: mkdir(cfg.OUTPUT_DIR) logger = setup_logger("DSSD", dist_util.get_rank(), cfg.OUTPUT_DIR) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) model = train(cfg, args) if not args.skip_test: logger.info('Start evaluating...') torch.cuda.empty_cache() # speed up evaluating after training finished do_evaluation(cfg, model, distributed=args.distributed)