def main(col_names=None): if len(sys.argv) < 2: print("Please specify input csv file name") return csv_file_name = sys.argv[1] data = [] with open(csv_file_name) as csvfile: readCSV = csv.reader(csvfile, delimiter=',') for row in readCSV: data.append(list(row)) train = resample(data[1:], replace=True, n_samples=int(len(data))) test = [] for i in data[1:]: if i not in train: test.append(i) tree = dtree_build.buildtree(train, min_gain=0.01, min_samples=5) dtree_build.printtree(tree, '', col_names) result2 = naive_bayes.build(train) # print(result2) # max_tree_depth = dtree_build.max_depth(tree) # print("max number of questions=" + str(max_tree_depth)) # print(test) out_put = [['instance', 'actual', 'predicted', 'probability']] total = 0 correct = 0 correct2 = 0 for i in test: total += 1 result = dtree_build.classify(i, tree) out = naive_bayes.classifier(result2, i) sum_probability = 0 max_number = 0 choice = '' for n, m in result.items(): sum_probability += m if m >= max_number: max_number = m choice = n if choice == i[-1]: correct += 1 if out == int(i[-1]): correct2 += 1 sublist = [total, i[-1], choice, max_number / sum_probability] out_put.append(sublist) # print(result) with open("predicted.csv", "w") as output: writer = csv.writer(output) writer.writerows(out_put) print("Accuracy for decision tree is", correct / len(test)) print("Accuracy for naive bayes is", correct2 / len(test))
def main(train_f, image_f, test_f, output_f): rows = tsv.get_list(train_f) for i in range(len(rows)): # Convert to numeric, then pop the Pokemon name rows[i] = move_tree.convert_numeric(rows[i]) rows[i].pop(0) tree = dtree_build.buildtree(rows) dtree_draw.drawtree(tree, labels, jpeg=image_f) classify_pokemon(tree, test_f, output_f)
def main(train_f, image_f, test_f, output_f): data = open(train_f) moves = [] rows = [] # Create a 2D array to pass into the function which creates the tree for line in data: arr = line.rstrip().split('\t') moves.append(arr.pop(0)) entry = convert_numeric(arr) # Convert arr into integers where appropriate rows.append(entry) data.close() tree = dtree_build.buildtree(rows) dtree_draw.drawtree(tree, labels, jpeg=image_f) classify_moves(tree, test_f, output_f)
def main(col_names=None): # parse command-line arguments to read the name of the input csv file # and optional 'draw tree' parameter if len(sys.argv) < 2: # input file name should be specified print("Please specify input csv file name") return csv_file_name = sys.argv[1] data = [] with open(csv_file_name) as csvfile: readCSV = csv.reader(csvfile, delimiter=',') for row in readCSV: list = [] for attribute in row: try: list += [float(attribute)] except: list += [attribute] data.append(list) print("Total number of records = ", len(data)) tree = dtree_build.buildtree(data, min_gain=0.01, min_samples=5) dtree_build.printtree(tree, '', col_names) max_tree_depth = dtree_build.max_depth(tree) print("max number of questions=" + str(max_tree_depth)) if len(sys.argv) > 2: # draw option specified import dtree_draw dtree_draw.drawtree(tree, jpeg=csv_file_name + '.jpg') if len(sys.argv) > 3: # create json file for d3.js visualization import json import dtree_to_json json_tree = dtree_to_json.dtree_to_jsontree(tree, col_names) print(json_tree) # create json data for d3.js interactive visualization with open(csv_file_name + ".json", "w") as write_file: json.dump(json_tree, write_file)
import dtree_build import sys if __name__ == "__main__": # fruits with their size and color fruits = [[4, 'red', 'apple'], [4, 'green', 'apple'], [1, 'red', 'cherry'], [1, 'green', 'grape'], [5, 'red', 'apple']] tree = dtree_build.buildtree(fruits) dtree_build.printtree(tree, '', ["size", "color"]) print("fruit [2, 'red'] is: ", dtree_build.classify([2, 'red'], tree)) print("fruit [4.5, 'red'] is: ", dtree_build.classify([4.5, 'red'], tree)) print("fruit [1.4, 'green'] is: ", dtree_build.classify([1.4, 'green'], tree)) max_tree_depth = dtree_build.max_depth(tree) print("max number of questions=" + str(max_tree_depth)) if len(sys.argv) > 1: # draw option specified import dtree_draw dtree_draw.drawtree(tree, jpeg='fruits_dt.jpg')