else:
            results.append(False)

    if results[1] == True:

        position = 0
        for term in terms:
            if term == main_terms_to_find[1]:
                break
            else:
                position = position + 1

        year = int(terms[position - 1])
        if results[0] == True:
            year = year + 1

        return year

    else:

        year = 0


if __name__ == "__main__":
    from pprint import pprint

    duck_data = duckling.parse("Hoteles de dos estrellas",
                               language="es",
                               dim_filter="number")
    pprint(duck_data)
예제 #2
0
파일: brain.py 프로젝트: 7ae/lucia
class Brain:
    MODULE_BASE_PATH = 'lucia.tasks.'

    def __init__(self):
        self.model = None
        self.r = sr.Recognizer()
        self.nlp = spacy.load(conf.get_property('spacy')['model'])
        self.espeak = conf.get_property('espeak')

        # Load low-level Duckling model
        self.duckling = Duckling()
        self.duckling.load(
            languages=conf.get_property('duckling')['languages'])

        # Remember tasks
        self.task_memory = []

    def create_model(self):
        # Create a DeepSpeech model with model path
        self.model = Model(conf.get_property('deepspeech')['model_path'])
        # Enable decoding using an external scorer
        self.model.enableExternalScorer(
            conf.get_property('deepspeech')['scorer_path'])

    def listen(self, debug_mode=False):
        while True:
            with sr.Microphone(sample_rate=conf.get_property(
                    'speech_recognition')['audio_rate']) as source:
                # Listen for a while and adjust the energy threshold to start and stop recording voice to account for ambient noise
                self.r.adjust_for_ambient_noise(
                    source,
                    duration=conf.get_property(
                        'speech_recognition')['energy_threshold'])
                self.r.dynamic_energy_threshold = True

                if debug_mode is False:
                    print("Say something")
                    audio = self.r.listen(source)
                    # Speech to text
                    audio = np.frombuffer(audio.frame_data, np.int16)
                    text = self.model.stt(audio)
                    self.speak(text)
                else:
                    text = input()

                # Wake up on hearing the wake word
                #if any(subtext in text for subtext in conf.get_property('wake_words')):
                #  self.understand(text)
                self.understand(text)

    def speak(self, text):
        subprocess.call('espeak-ng -v {}+{}{} "{}"'.format(
            self.espeak['language'], self.espeak['gender'],
            self.espeak['pitch'], text),
                        shell=True)

    def understand(self, sentence):
        # Break paragraph into sentences
        tokenized_sentence = sent_tokenize(sentence)

        # Break sentence into words
        for sent in tokenized_sentence:
            tokenized_word = word_tokenize(sent)

            # Tag corpora with universal POS tagset
            # For tag list, read https://www.nltk.org/book/ch05.html#tab-universal-tagset
            pos_tags = nltk.pos_tag(tokenized_word, tagset='universal')

            # Divide sentence into noun phrases with regular expression
            grammar = 'NOUN: {<DET>?<ADJ>*<NOUN>}'
            cp = nltk.RegexpParser(grammar)
            # Find chunk structure
            cs = cp.parse(pos_tags)
            # B-{tag} beginning, I-{tag} inside, O-{tag} outside
            iob_tags = np.asarray(tree2conlltags(cs)).tolist()

            # Recognize named entities
            doc = self.nlp(sent)

            # Parse word into numeral, ordinal, and time
            parse = lambda ne: dict([[
                _['dim'], _['value']['value']
            ] for _ in self.duckling.parse(
                ne, dim_filter=conf.get_property('duckling')['dimensions'])])
            # [Word, character positions and entity type]. For all entity types, read https://spacy.io/api/annotation#named-entities
            ne = list([
                ent.text, ent.start_char, ent.end_char, ent.label_,
                parse(ent.text)
            ] for ent in doc.ents)

            ne_tags = [_.ent_type_ for _ in doc]
            # Merge iob tags and named entity tags
            tagged_sent = [
                list(np.append(iob_tags[i], ne_tags[i]))
                for i in range(len(iob_tags))
            ]
            tagged_sent = ''.join(str(x) for x in tagged_sent)

            self.decide(tagged_sent, ne)

    def think(self, pattern, tagged_sent):
        # Match tagged sentence against combinations of POS tags, words in any order: (?=.*\bword\b)(?=.*\bADJ\bNOUN\b).*
        r = re.compile(
            '(?=.*\\b' +
            pattern.replace('  ', '\\b.*\\b').replace(' ', '\\b)(?=.*\\b') +
            '\\b).*')
        return r.search(tagged_sent)

    def decide(self, tagged_sent, named_entity):
        for task in conf.get_property('tasks'):
            for pattern in conf.get_property('tasks')[task]:
                # If sentence matches any pattern, dynamtically create class
                if self.think(pattern, tagged_sent):
                    # Split module name and class name with dot
                    module = importlib.import_module(self.MODULE_BASE_PATH +
                                                     task.rsplit('.', 1)[0])
                    instance = getattr(module, task.rsplit('.', 1)[1])()
                    print(instance)

                    # Search whether task_memory contains the same class instance
                    _run = False
                    for mem in self.task_memory:
                        if type(instance) == type(mem):
                            mem.run(self, tagged_sent, named_entity)
                            _run = True
                            break
                    if not _run:
                        # If not exists, store new class instance in task_memory
                        self.task_memory = [
                            instance.run(self, tagged_sent, named_entity)
                        ] + self.task_memory

                    break
예제 #3
0
def test_not_load():
    duckling = Duckling()
    assert duckling._is_loaded is False
    with pytest.raises(RuntimeError):
        duckling.parse('')
예제 #4
0
class AppointmentForm(FormAction):
    """Example of a custom form action"""
    def __init__(self):
        self.d = Duckling()
        self.d.load()

    def name(self):
        # type: () -> Text
        """Unique identifier of the form"""

        return "appointment_form"

    @staticmethod
    def required_slots(tracker: Tracker) -> List[Text]:
        """A list of required slots that the form has to fill"""

        return ["date", "time", "pet", "petName"]

    def slot_mappings(self):

        return {"date": [self.from_entity(entity="date"),
                         self.from_text()],
            "time": [self.from_entity(entity="time"),
                         self.from_text()],
            "pet": [self.from_entity(entity="pet"),
                         self.from_text()],
            "petName": [self.from_entity(entity="petName"),
                         self.from_text()],
            }

    @staticmethod
    def pet_db():
        # type: () -> List[Text]
        """Database of supported cuisines"""
        return ["dog",
                "cat",
                "bird",
                "tortoise",
                "rabbit",
                "guinea pig",
                "mouse",
                "hamster", 
                "turtles"]

    def parseRet(self, value:Text, dim:Text, grain:Text) -> Text:
        parses = self.d.parse(value)
        for parse in parses:
            if parse ['dim'] == dim:
                if parse['value'].get('grain') == grain:
                    return parse ['value']['value']
        return None
        

    def validate_date(self,
                         value: Text,
                         dispatcher: CollectingDispatcher,
                         tracker: Tracker,
                         domain: Dict[Text, Any]) -> Dict[Text, Any]:
        """Validate date value."""
       
        date = self.parseRet(value, 'time', 'day')
        if (date != None):
            return {"date": date}
        else:
            dispatcher.utter_template('utter_wrong_date', tracker)
            # validation failed, set this slot to None, meaning the
            # user will be asked for the slot again
            return {"date": None}

    def validate_pet(self, value: Text,
                         dispatcher: CollectingDispatcher,
                         tracker: Tracker,
                         domain: Dict[Text, Any]) -> Dict[Text, Any]:
        """Validate pet value."""

        if value.lower() in self.pet_db():
            # validation succeeded
            return {"pet":value}
        else:
            dispatcher.utter_template('utter_wrong_pet', tracker)
            # validation failed, set this slot to None, meaning the
            # user will be asked for the slot again
            return {"pet": None}

    def validate_time(self,
                            value: Text,
                            dispatcher: CollectingDispatcher,
                            tracker: Tracker,
                            domain: Dict[Text, Any]) -> Dict[Text, Any]:
        """Validate time value."""

        time = self.parseRet(value, 'time', 'minute')
        if (time != None):
            return {"time":time}
        else:
            dispatcher.utter_template('utter_wrong_time', tracker)
            # validation failed, set slot to None
            return {"time": None}

    def validate_petName(self,
                            value: Text,
                            dispatcher: CollectingDispatcher,
                            tracker: Tracker,
                            domain: Dict[Text, Any]) -> Dict[Text, Any]:
        """Validate petName value."""
        print (value)
        return {"petName": value}

    def submit(self,
               dispatcher: CollectingDispatcher,
               tracker: Tracker,
               domain: Dict[Text, Any]) -> List[Dict]:
        """Define what the form has to do
            after all required slots are filled"""

        # utter submit template
        print("petName: "+tracker.get_slot("petName"))
        print("pet: "+tracker.get_slot("pet"))
        print("time: "+tracker.get_slot("time"))
        print("date: "+tracker.get_slot("date"))        
        
        url = 'https://dimo1.ii.uam.es:8443/VeterinarioApi/Rasa'
        myobj = {'petName': tracker.get_slot("petName"),
                 'pet': tracker.get_slot("pet"),
                 'time': tracker.get_slot("time"),
                 'date': tracker.get_slot("date"),}

        x = requests.post(url, json = myobj)

        print(x.text)
        dispatcher.utter_message(x.text)
        #dispatcher.utter_template('utter_submit', tracker)
        return [SlotSet("petName", None), SlotSet("pet", None), SlotSet("time", None), SlotSet("date", None)]