def test_show_experiments_md(capsys): all_experiments = { "workspace": { "baseline": { "data": { "timestamp": None, "params": {"params.yaml": {"data": {"foo": 1}}}, "queued": False, "running": False, "executor": None, "metrics": { "scores.json": {"data": {"bar": 0.9544670443829399}} }, } } }, } show_experiments( all_experiments, precision=None, fill_value="", iso=True, markdown=True ) cap = capsys.readouterr() assert cap.out == textwrap.dedent( """\ | Experiment | Created | bar | foo | |--------------|-----------|--------------------|-------| | workspace | | 0.9544670443829399 | 1 |\n """ )
def test_show_experiments(capsys): show_experiments(all_experiments, precision=None, fill_value="", iso=True, csv=True) cap = capsys.readouterr() assert ("Experiment,rev,typ,Created,parent,State,scores.json:" "featurize.max_features,scores.json:featurize.ngrams," "avg_prec,roc_auc,params.yaml:featurize.max_features," "params.yaml:featurize.ngrams,params.yaml:parent," "train.n_est,train.min_split" in cap.out) assert ( ",workspace,baseline,,,,3000,1,0.5843640011189556,0.9544670443829399," "3000,1,20170428,100,36" in cap.out) assert ("master,b05eecc,baseline,2021-08-02T16:48:14,,,3000,1," "0.5325162867864254,0.9106964878520005,3000,1,20170428,100,2" in cap.out) assert ( "exp-44136,ae99936,branch_base,2021-08-31T14:56:55,,Running," "3000,1,0.5843640011189556,0.9544670443829399,3000,1,20170428,100,36" in cap.out)
def test_show_experiments_sort_by(capsys, sort_order): sort_experiments = { "workspace": { "baseline": { "data": { "timestamp": None, "params": { "params.yaml": { "data": { "foo": 1, } } }, "queued": False, "running": False, "executor": None, "metrics": {}, } } }, "233b132676792d89e848e5c9c12e408d7efde78a": { "baseline": { "data": { "timestamp": datetime(2021, 8, 2, 16, 48, 14), "params": { "params.yaml": { "data": { "foo": 0, } } }, "queued": False, "running": False, "executor": None, "metrics": {}, "name": "master", } }, "fad0a94": { "data": { "timestamp": datetime(2021, 8, 31, 14, 56, 55), "params": { "params.yaml": { "data": { "foo": 1, } } }, "queued": False, "running": False, "executor": None, "metrics": {}, "name": "exp-89140", } }, "60fcda8": { "data": { "timestamp": datetime(2021, 8, 31, 14, 56, 55), "params": { "params.yaml": { "data": { "foo": 2, } } }, "queued": False, "running": False, "executor": None, "metrics": {}, "name": "exp-43537", } }, "a7e9aaf": { "data": { "timestamp": datetime(2021, 8, 31, 14, 56, 55), "params": { "params.yaml": { "data": { "foo": 0, } } }, "queued": False, "running": False, "executor": None, "metrics": {}, "name": "exp-4f89e", } }, }, } show_experiments( sort_experiments, precision=None, fill_value="", iso=True, csv=True, sort_by="foo", sort_order=sort_order, ) cap = capsys.readouterr() rows = list(csv.reader(cap.out.strip().split("\n"))) # [3:] To skip header, workspace and baseline(master) # which are not affected by order params = tuple([int(row[-1]) for row in rows[3:]]) if sort_order == "asc": assert params == (0, 1, 2) else: assert params == (2, 1, 0)
def test_show_experiments_csv(capsys): all_experiments = { "workspace": { "baseline": { "data": { "timestamp": None, "params": { "params.yaml": { "data": { "featurize": { "max_features": 3000, "ngrams": 1, }, "parent": 20170428, "train": { "n_est": 100, "min_split": 36, }, } } }, "queued": False, "running": False, "executor": None, "metrics": { "scores.json": { "data": { "featurize": { "max_features": 3000, "ngrams": 1, }, "avg_prec": 0.5843640011189556, "roc_auc": 0.9544670443829399, } } }, } } }, "b05eecc666734e899f79af228ff49a7ae5a18cc0": { "baseline": { "data": { "timestamp": datetime(2021, 8, 2, 16, 48, 14), "params": { "params.yaml": { "data": { "featurize": { "max_features": 3000, "ngrams": 1, }, "parent": 20170428, "train": { "n_est": 100, "min_split": 2, }, } } }, "queued": False, "running": False, "executor": None, "metrics": { "scores.json": { "data": { "featurize": { "max_features": 3000, "ngrams": 1, }, "avg_prec": 0.5325162867864254, "roc_auc": 0.9106964878520005, } } }, "name": "master", } }, "ae99936461d6c3092934160f8beafe66a294f98d": { "data": { "timestamp": datetime(2021, 8, 31, 14, 56, 55), "params": { "params.yaml": { "data": { "featurize": { "max_features": 3000, "ngrams": 1, }, "parent": 20170428, "train": { "n_est": 100, "min_split": 36, }, } } }, "queued": True, "running": True, "executor": None, "metrics": { "scores.json": { "data": { "featurize": { "max_features": 3000, "ngrams": 1, }, "avg_prec": 0.5843640011189556, "roc_auc": 0.9544670443829399, } } }, "name": "exp-44136", } }, }, } show_experiments( all_experiments, precision=None, fill_value="", iso=True, csv=True ) cap = capsys.readouterr() assert ( "Experiment,rev,typ,Created,parent,State,scores.json:" "featurize.max_features,scores.json:featurize.ngrams," "avg_prec,roc_auc,params.yaml:featurize.max_features," "params.yaml:featurize.ngrams,params.yaml:parent," "train.n_est,train.min_split" in cap.out ) assert ( ",workspace,baseline,,,,3000,1,0.5843640011189556,0.9544670443829399," "3000,1,20170428,100,36" in cap.out ) assert ( "master,b05eecc,baseline,2021-08-02T16:48:14,,,3000,1," "0.5325162867864254,0.9106964878520005,3000,1,20170428,100,2" in cap.out ) assert ( "exp-44136,ae99936,branch_base,2021-08-31T14:56:55,,Running," "3000,1,0.5843640011189556,0.9544670443829399,3000,1,20170428,100,36" in cap.out )