def get_image_annotation(): setup_tensorflow() output_dir = mkdtemp() png_output = join(output_dir, "png") oflow_output = join(output_dir, "oflow") de = DataExtraction(ImageInput( input_paths="test-data/img/*" )) de.run_annotators([ ColorHistogramAnnotator(colorspace="luv"), DominantColorAnnotator(), EmbedAnnotator(embedding=EmbedFrameKerasResNet50()), FaceAnnotator( detector=FaceDetectMtcnn(), embedding=FaceEmbedVgg2() ), ObjectAnnotator(detector=ObjectDetectRetinaNet()), PngAnnotator(output_dir=png_output, size=229), ImgAnnotator() ]) return de, output_dir
def get_video_frame_annotation(): setup_tensorflow() output_dir = mkdtemp() png_output = join(output_dir, "png") oflow_output = join(output_dir, "oflow") de = DataExtraction(FrameInput( input_path="test-data/video-clip.mp4", bsize=128 )) frames = [1, 3, 310] # make sure there is an empty batch: 128-255 de.run_annotators([ ColorHistogramAnnotator(frames=frames, colorspace="lab"), DominantColorAnnotator(frames=frames), DiffAnnotator(quantiles=[40]), EmbedAnnotator(embedding=EmbedFrameKerasResNet50(), frames=frames), FaceAnnotator( detector=FaceDetectMtcnn(), embedding=FaceEmbedVgg2(), frames=frames ), HOFMAnnotator(frames=frames), ObjectAnnotator(detector=ObjectDetectRetinaNet(), frames=frames), OpticalFlowAnnotator(output_dir=oflow_output, frames=frames), PngAnnotator(output_dir=png_output, frames=frames), ImgAnnotator() ]) return de, output_dir
def get_video_annotation(): setup_tensorflow() output_dir = mkdtemp() png_output = join(output_dir, "png") oflow_output = join(output_dir, "oflow") de = DataExtraction(FrameInput( input_path="test-data/video-clip.mp4", bsize=256 )) freq = 128 de.run_annotators([ ColorHistogramAnnotator(freq=freq), DominantColorAnnotator(freq=freq), DiffAnnotator(quantiles=[40]), EmbedAnnotator(embedding=EmbedFrameKerasResNet50(), freq=freq), FaceAnnotator( detector=FaceDetectMtcnn(), embedding=FaceEmbedVgg2(), freq=freq ), HOFMAnnotator(freq=freq), ObjectAnnotator(detector=ObjectDetectRetinaNet(), freq=freq), OpticalFlowAnnotator(output_dir=oflow_output, freq=freq), PngAnnotator(output_dir=png_output, freq=freq) ], max_batch=2) return de, output_dir
def get_audio_subtitle_annotation(): setup_tensorflow() output_dir = mkdtemp() spec_output = join(output_dir, "spec") tone_output = join(output_dir, "tone") de = DataExtraction(FrameInput( input_path="test-data/video-clip.mp4", bsize=256 ), ainput="test-data/video-clip.wav", sinput="test-data/video-clip.srt") de.run_audio_annotator() de.run_subtitle_annotator() breaks = [0, 20, 150, 200] de.run_aggregator(SpectrogramAnnotator( output_dir=spec_output, breaks=breaks )) de.run_aggregator(SpectrogramAnnotator( spectrogram=True, breaks=breaks, name="spec-data" )) de.run_aggregator(PowerToneAnnotator( output_dir=tone_output, breaks=breaks )) return de, output_dir
def run_setup_tensorflow(): setup_tensorflow()