예제 #1
0
def _pegasus_fragment_helper(m=None, target_graph=None):
    # This is a function that takes m or a target_graph and produces a
    # `processor` object for the corresponding Pegasus graph, and a function
    # that translates embeddings produced by that object back to the original
    # pegasus graph.  Consumed by `find_clique_embedding` and
    # `find_biclique_embedding`.

    # Organize parameter values
    if target_graph is None:
        if m is None:
            raise TypeError("m and target_graph cannot both be None.")
        target_graph = pegasus_graph(m)

    m = target_graph.graph['rows']  # We only support square Pegasus graphs

    # Deal with differences in ints vs coordinate target_graphs
    if target_graph.graph['labels'] == 'nice':
        back_converter = pegasus_coordinates.pegasus_to_nice
        back_translate = lambda embedding: {
            key: [back_converter(p) for p in chain]
            for key, chain in embedding.items()
        }
    elif target_graph.graph['labels'] == 'int':
        # Convert nodes in terms of Pegasus coordinates
        coord_converter = pegasus_coordinates(m)

        # A function to convert our final coordinate embedding to an ints embedding
        back_translate = lambda embedding: {
            key: list(coord_converter.iter_pegasus_to_linear(chain))
            for key, chain in embedding.items()
        }
    else:
        back_translate = lambda embedding: embedding

    # collect edges of the graph produced by splitting each Pegasus qubit into six pieces
    fragment_edges = list(fragmented_edges(target_graph))

    # Find clique embedding in K2,2 Chimera graph
    embedding_processor = processor(fragment_edges,
                                    M=m * 6,
                                    N=m * 6,
                                    L=2,
                                    linear=False)

    # Convert chimera fragment embedding in terms of Pegasus coordinates
    defragment_tuple = get_tuple_defragmentation_fn(target_graph)

    def embedding_to_pegasus(nodes, emb):
        emb = map(defragment_tuple, emb)
        emb = dict(zip(nodes, emb))
        emb = back_translate(emb)
        return emb

    return embedding_processor, embedding_to_pegasus
예제 #2
0
 def test_nice_coordinates(self):
     p = pegasus_graph(3, nice_coordinates=True)
     c = chimera_graph(24, coordinates=True)
     num_edges = 0
     for u, v in fragmented_edges(p):
         self.assertTrue(c.has_edge(u, v))
         num_edges += 1
     #This is a weird edgecount: each node produces 5 extra edges for the internal connections
     #between fragments corresponding to a pegasus qubit.  But then we need to delete the odd
     #couplers, which aren't included in the chimera graph -- odd couplers make a perfect
     #matching, so thats 1/2 an edge per node.
     self.assertEqual(p.number_of_edges() + 9 * p.number_of_nodes()//2, num_edges)
예제 #3
0
def find_clique_embedding(k, m=None, target_graph=None):
    """Find an embedding for a clique in a Pegasus graph.

    Given a clique (fully connected graph) and target Pegasus graph, attempts
    to find an embedding by transforming the Pegasus graph into a :math:`K_{2,2}`
    Chimera graph and then applying a Chimera clique-finding algorithm. Results
    are converted back to Pegasus coordinates.

    Args:
        k (int/iterable/:obj:`networkx.Graph`): A complete graph to embed,
            formatted as a number of nodes, node labels, or a NetworkX graph.
        m (int): Number of tiles in a row of a square Pegasus graph. Required to
            generate an m-by-m Pegasus graph when `target_graph` is None.
        target_graph (:obj:`networkx.Graph`): A Pegasus graph. Required when `m`
            is None.

    Returns:
        dict: An embedding as a dict, where keys represent the clique's nodes and
        values, formatted as lists, represent chains of pegasus coordinates.

    Examples:
        This example finds an embedding for a :math:`K_3` complete graph in a
        2-by-2 Pegaus graph.

        >>> from dwave.embedding.pegasus import find_clique_embedding
        ...
        >>> print(find_clique_embedding(3, 2))    # doctest: +SKIP
        {0: [10, 34], 1: [35, 11], 2: [32, 12]}

    """
    # Organize parameter values
    if target_graph is None:
        if m is None:
            raise TypeError("m and target_graph cannot both be None.")
        target_graph = pegasus_graph(m)

    m = target_graph.graph['rows']  # We only support square Pegasus graphs
    _, nodes = k

    # Deal with differences in ints vs coordinate target_graphs
    if target_graph.graph['labels'] == 'nice':
        back_converter = pegasus_coordinates.pegasus_to_nice
        back_translate = lambda embedding: {
            key: [back_converter(p) for p in chain]
            for key, chain in embedding.items()
        }
    elif target_graph.graph['labels'] == 'int':
        # Convert nodes in terms of Pegasus coordinates
        coord_converter = pegasus_coordinates(m)

        # A function to convert our final coordinate embedding to an ints embedding
        back_translate = lambda embedding: {
            key: list(coord_converter.iter_pegasus_to_linear(chain))
            for key, chain in embedding.items()
        }
    else:
        back_translate = lambda embedding: embedding

    # collect edges of the graph produced by splitting each Pegasus qubit into six pieces
    fragment_edges = list(fragmented_edges(target_graph))

    # Find clique embedding in K2,2 Chimera graph
    embedding_processor = processor(fragment_edges,
                                    M=m * 6,
                                    N=m * 6,
                                    L=2,
                                    linear=False)
    chimera_clique_embedding = embedding_processor.tightestNativeClique(
        len(nodes))

    # Convert chimera fragment embedding in terms of Pegasus coordinates
    defragment_tuple = get_tuple_defragmentation_fn(target_graph)
    pegasus_clique_embedding = map(defragment_tuple, chimera_clique_embedding)
    pegasus_clique_embedding = dict(zip(nodes, pegasus_clique_embedding))
    pegasus_clique_embedding = back_translate(pegasus_clique_embedding)

    if len(pegasus_clique_embedding) != len(nodes):
        raise ValueError("No clique embedding found")

    return pegasus_clique_embedding