def _pegasus_fragment_helper(m=None, target_graph=None): # This is a function that takes m or a target_graph and produces a # `processor` object for the corresponding Pegasus graph, and a function # that translates embeddings produced by that object back to the original # pegasus graph. Consumed by `find_clique_embedding` and # `find_biclique_embedding`. # Organize parameter values if target_graph is None: if m is None: raise TypeError("m and target_graph cannot both be None.") target_graph = pegasus_graph(m) m = target_graph.graph['rows'] # We only support square Pegasus graphs # Deal with differences in ints vs coordinate target_graphs if target_graph.graph['labels'] == 'nice': back_converter = pegasus_coordinates.pegasus_to_nice back_translate = lambda embedding: { key: [back_converter(p) for p in chain] for key, chain in embedding.items() } elif target_graph.graph['labels'] == 'int': # Convert nodes in terms of Pegasus coordinates coord_converter = pegasus_coordinates(m) # A function to convert our final coordinate embedding to an ints embedding back_translate = lambda embedding: { key: list(coord_converter.iter_pegasus_to_linear(chain)) for key, chain in embedding.items() } else: back_translate = lambda embedding: embedding # collect edges of the graph produced by splitting each Pegasus qubit into six pieces fragment_edges = list(fragmented_edges(target_graph)) # Find clique embedding in K2,2 Chimera graph embedding_processor = processor(fragment_edges, M=m * 6, N=m * 6, L=2, linear=False) # Convert chimera fragment embedding in terms of Pegasus coordinates defragment_tuple = get_tuple_defragmentation_fn(target_graph) def embedding_to_pegasus(nodes, emb): emb = map(defragment_tuple, emb) emb = dict(zip(nodes, emb)) emb = back_translate(emb) return emb return embedding_processor, embedding_to_pegasus
def test_nice_coordinates(self): p = pegasus_graph(3, nice_coordinates=True) c = chimera_graph(24, coordinates=True) num_edges = 0 for u, v in fragmented_edges(p): self.assertTrue(c.has_edge(u, v)) num_edges += 1 #This is a weird edgecount: each node produces 5 extra edges for the internal connections #between fragments corresponding to a pegasus qubit. But then we need to delete the odd #couplers, which aren't included in the chimera graph -- odd couplers make a perfect #matching, so thats 1/2 an edge per node. self.assertEqual(p.number_of_edges() + 9 * p.number_of_nodes()//2, num_edges)
def find_clique_embedding(k, m=None, target_graph=None): """Find an embedding for a clique in a Pegasus graph. Given a clique (fully connected graph) and target Pegasus graph, attempts to find an embedding by transforming the Pegasus graph into a :math:`K_{2,2}` Chimera graph and then applying a Chimera clique-finding algorithm. Results are converted back to Pegasus coordinates. Args: k (int/iterable/:obj:`networkx.Graph`): A complete graph to embed, formatted as a number of nodes, node labels, or a NetworkX graph. m (int): Number of tiles in a row of a square Pegasus graph. Required to generate an m-by-m Pegasus graph when `target_graph` is None. target_graph (:obj:`networkx.Graph`): A Pegasus graph. Required when `m` is None. Returns: dict: An embedding as a dict, where keys represent the clique's nodes and values, formatted as lists, represent chains of pegasus coordinates. Examples: This example finds an embedding for a :math:`K_3` complete graph in a 2-by-2 Pegaus graph. >>> from dwave.embedding.pegasus import find_clique_embedding ... >>> print(find_clique_embedding(3, 2)) # doctest: +SKIP {0: [10, 34], 1: [35, 11], 2: [32, 12]} """ # Organize parameter values if target_graph is None: if m is None: raise TypeError("m and target_graph cannot both be None.") target_graph = pegasus_graph(m) m = target_graph.graph['rows'] # We only support square Pegasus graphs _, nodes = k # Deal with differences in ints vs coordinate target_graphs if target_graph.graph['labels'] == 'nice': back_converter = pegasus_coordinates.pegasus_to_nice back_translate = lambda embedding: { key: [back_converter(p) for p in chain] for key, chain in embedding.items() } elif target_graph.graph['labels'] == 'int': # Convert nodes in terms of Pegasus coordinates coord_converter = pegasus_coordinates(m) # A function to convert our final coordinate embedding to an ints embedding back_translate = lambda embedding: { key: list(coord_converter.iter_pegasus_to_linear(chain)) for key, chain in embedding.items() } else: back_translate = lambda embedding: embedding # collect edges of the graph produced by splitting each Pegasus qubit into six pieces fragment_edges = list(fragmented_edges(target_graph)) # Find clique embedding in K2,2 Chimera graph embedding_processor = processor(fragment_edges, M=m * 6, N=m * 6, L=2, linear=False) chimera_clique_embedding = embedding_processor.tightestNativeClique( len(nodes)) # Convert chimera fragment embedding in terms of Pegasus coordinates defragment_tuple = get_tuple_defragmentation_fn(target_graph) pegasus_clique_embedding = map(defragment_tuple, chimera_clique_embedding) pegasus_clique_embedding = dict(zip(nodes, pegasus_clique_embedding)) pegasus_clique_embedding = back_translate(pegasus_clique_embedding) if len(pegasus_clique_embedding) != len(nodes): raise ValueError("No clique embedding found") return pegasus_clique_embedding