def combined_json( detection_json_dir, classification_json_dir): """ Combine results from detector and classifier @param detection_json_dir: directory to detector results @param classification_json_dir: directory to classifier results """ for json_file in tools.find_files(detection_json_dir): json_data = data.parse_json(json_file) annotations = json_data['annotations'] for i in range(len(annotations)): classification_json_file = os.path.join( classification_json_dir, os.path.basename(json_file).split('.')[0] + '_' + str(i) + '.json') if os.path.exists(classification_json_file): classification_annotations = data.parse_json( classification_json_file)['annotations'][0] annotations[i]['type'] = 'detection_classification' annotations[i]['label'] += '_' + \ classification_annotations['label'] annotations[i]['labinfo'] = classification_annotations[ 'labinfo'] json_data['annotations'] = annotations out_json = os.path.join( os.path.dirname(json_file), os.path.basename(json_file).split('.')[0] + '_combined.json') with open(out_json, 'w') as wf: json.dump(json_data, wf)
def find_images(dir_path=None, walkin=True, keyword=None): """Find images under a directory Keyword arguments: dir_path -- path of the directory to check (default: '.') keyword -- keyword used to filter images (default: None) walkin -- True to list recursively (default: True) @return output: a list of images found """ if dir_path is not None and os.path.isfile(dir_path): return [dir_path] return tools.find_files(dir_path=dir_path, keyword=keyword, walkin=walkin, suffix=('.jpg', '.png', '.JPEG', '.bmp', '.gif'))
def create_tf_record(self, json_dir, tfrecord_path): writer = tf.python_io.TFRecordWriter(tfrecord_path) check_keys = ["folder", "filename", "annotations"] for json_file in tools.find_files(json_dir, walkin=False): try: json_content = tools.parse_json(json_file) except BaseException: print("Fail to open %s" % json_file) continue for key in check_keys: if key not in json_content.keys(): print("%s is not found in %s" % (key, json_file)) continue tf_example = self.lab_format_to_tf_example(json_content) writer.write(tf_example.SerializeToString()) writer.close()
def main_process(self): """ main process """ if not os.path.isdir(self.input_data): self.logger.error("%s is not a valid folder" % self.input_data) self.terminate_flag = True if self.overwrite: output = open(self.output_file, 'w') else: if tools.check_exist(self.output_file): output = open(self.output_file, 'a') else: output = open(self.output_file, 'w') print("LearnerYOLO: creating %s" % self.output_file) check_keys = ["folder", "filename", "annotations"] for json_file in tools.find_files(self.input_data, walkin=False): try: json_content = tools.parse_json(json_file) except BaseException: self.logger.error("Fail to open %s" % json_file) continue for key in check_keys: if key not in json_content.keys(): self.logger.error("%s is not found in %s" % (key, json_file)) continue folder = json_content["folder"] filename = json_content["filename"] # FIXME # folder = folder.replace("results", "labeled_data") # folder = folder.replace("_tmp", "") in_img_path = os.path.join(folder, filename) out_img_path = os.path.join(self.img_folder, filename) o_file_path = os.path.join( self.label_folder, tools.remove_extension(filename) + '.txt') o_file = open(o_file_path, 'w') annos = json_content["annotations"] size, pix = image.get_img_info(in_img_path) h = float(size[0]) w = float(size[1]) for anno in annos: X = [] Y = [] cls = anno["label"] if cls not in self.classes: self.logger.debug("%s is not in the selected class" % cls) continue cls_id = self.classes.index(cls) X = [anno["left"], anno["right"]] Y = [anno["top"], anno["bottom"]] bb = self.convert((w, h), X, Y) o_file.write( str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') o_file.close() self.logger.info("Link %s to %s" % (in_img_path, out_img_path)) os.symlink(in_img_path, out_img_path) output.write(out_img_path + '\n') output.close() # FIXME darknet env has to be well prepared and fix the classes now train_path = os.path.join(self.darknet_path, "train.txt") if train_path != self.output_file: copyfile(self.output_file, train_path) os.chdir(self.darknet_path) cmd = ("./darknet detector train cfg/dt42.data" " cfg/tiny-yolo-voc-dt42.cfg darknet.weights.13 -gpus 1") self.logger.info("Running %s " % cmd) output = subprocess.check_output(["bash", "-c", cmd]) self.results = { "root_directory": self.darknet_path, "weight_file": "backup_dt42/yolo-voc-dt42_final.weights", "data_file": "cfg/dt42.data", "names_file": "data/dt42.names", "cfg_file": "cfg/tiny-yolo-voc-dt42.cfg" }
def main(): """ main function to run pipeline """ args = get_args() logger = logging.getLogger('launcher') log_level = logging.WARNING if args.verbosity == 1: log_level = logging.INFO elif args.verbosity >= 2: log_level = logging.DEBUG formatter = logging.Formatter('[launcher] %(levelname)s %(message)s') console = logging.StreamHandler() console.setFormatter(formatter) logger.setLevel(log_level) logger.addHandler(console) logger.info('lab_flag is %r' % args.lab_flag) pipeline = dt42pl.Pipeline(args.pipeline_config, dyda_config_path=args.dyda_config_path, parent_result_folder=args.output, verbosity=args.verbosity, lab_flag=args.lab_flag, force_run_skip=args.force_run_skip) if args.read_frame: fr = frame_reader.FrameReader() # looping over input data paths logger.info('Running Reader and Selector for frames') data_list = args.data_list if args.json_list: logger.warning('json_list will replace -d/--data_list argument') data_list = args.json_list force_snapshot = False if args.force_snapshot: force_snapshot = True bfile_list = False if args.direct_input: fpaths = data_list elif os.path.isfile(data_list): if tools.check_ext(data_list, ".json"): fpaths = tools.parse_json(data_list, 'utf-8') else: fpaths = tools.txt_to_list(data_list) bfile_list = True elif os.path.isdir(data_list): fpaths = [] bfile_list = False else: logger.error("Something wrong with data_list input, please check") sys.exit(0) ignore_keys = [] if len(args.ignore_key) > 1: ignore_keys = args.ignore_key.split(',') all_pass = False if args.check_output: logger.debug(args.ref_output) if os.path.isdir(args.ref_output): fn_list = sorted( tools.find_files(dir_path=args.ref_output, keyword=None, suffix=('.json'), walkin=True)) ref_output = [] for fn in fn_list: ref_output.append(tools.parse_json(fn, 'utf-8')) elif os.path.isfile(args.ref_output): ref_output = tools.parse_json(args.ref_output, 'utf-8') else: logger.error("Something wrong with reference output, please check") sys.exit(0) all_pass = True benchmark = False if args.benchmark: benchmark = True if bfile_list and args.loop_over_input and args.multi_channels: for fi in range(len(fpaths)): ext_data = [] ext_meta = [] for ci in range(len(fpaths[fi])): full_path = fpaths[fi][ci] logger.debug(full_path) if args.read_frame: logger.debug('Reading frame for producing binary input') fr.reset() fr.input_data = [full_path] fr.run() ext_data.append(fr.output_data[0]) else: ext_data.append(full_path) ext_meta.append(fpaths[fi][ci]) ext_meta = read_meta_single(args, logger, full_path) pipeline.run(ext_data, external_meta=ext_meta, benchmark=benchmark, force_snapshot=force_snapshot) if args.check_output: if not isinstance(pipeline.output, list): tar_list = [pipeline.output] ref_list = [ref_output[fi]] else: tar_list = pipeline.output ref_list = ref_output[fi] for ci, tar_data in enumerate(tar_list): all_pass = check_result(tar_data, ref_list[ci], full_path, all_pass, ignore_keys=ignore_keys) elif bfile_list and args.loop_over_input: counter = 0 wrong = 0 for fi in range(len(fpaths)): counter = counter + 1 full_path = fpaths[fi] logger.debug(full_path) base_name = tools.remove_extension(full_path, return_type='base-only') # Assign external data and metadata if args.do_not_pack: ext_data = full_path else: ext_data = [full_path] if args.read_frame: logger.debug('Reading frame for producing binary input') fr.reset() fr.input_data = [full_path] fr.run() ext_data = fr.output_data[0] ext_meta = read_meta_single(args, logger, full_path) pipeline.run(ext_data, base_name=base_name, external_meta=ext_meta, benchmark=benchmark, force_snapshot=force_snapshot) if args.check_output: all_pass = check_result(pipeline.output, ref_output[fi], full_path, all_pass, ignore_keys=ignore_keys) elif bfile_list: ext_meta = [] if args.read_meta: logger.debug('Reading json for producing binary meta') for full_path in fpaths: if args.repeated_metadata_path == '': meta_path = tools.remove_extension(full_path) + '.json' else: meta_path = args.repeated_metadata_path try: ext_meta.append(tools.parse_json(meta_path, 'utf-8')) except BaseException: logger.error('Fail to parse %s' % meta_path) sys.exit(0) pipeline.run(fpaths, external_meta=ext_meta, benchmark=benchmark, force_snapshot=force_snapshot) if args.check_output: all_pass = check_result(pipeline.output, ref_output, fpaths, all_pass, ignore_keys=ignore_keys) else: full_path = data_list ext_meta = read_meta_single(args, logger, full_path) pipeline.run(full_path, external_meta=ext_meta, benchmark=benchmark, force_snapshot=force_snapshot) if args.check_output: all_pass = check_result(pipeline.output[0], ref_output[0], fpaths, all_pass, ignore_keys=ignore_keys) if args.check_output is True and all_pass is True: print("Pass all test data in input data list.") print("Lab pipeline launcher completes successfully")