def main(args): env_info = get_environ_info() places = fluid.CUDAPlace(ParallelEnv().dev_id) \ if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \ else fluid.CPUPlace() if args.dataset not in DATASETS: raise Exception( '`--dataset` is invalid. it should be one of {}'.format( str(list(DATASETS.keys())))) dataset = DATASETS[args.dataset] with fluid.dygraph.guard(places): eval_transforms = T.Compose([T.Resize(args.input_size), T.Normalize()]) eval_dataset = dataset(dataset_root=args.dataset_root, transforms=eval_transforms, mode='val') if args.model_name not in MODELS: raise Exception( '`--model_name` is invalid. it should be one of {}'.format( str(list(MODELS.keys())))) model = MODELS[args.model_name](num_classes=eval_dataset.num_classes) evaluate(model, eval_dataset, model_dir=args.model_dir, num_classes=eval_dataset.num_classes)
def main(args): env_info = get_environ_info() places = fluid.CUDAPlace(ParallelEnv().dev_id) \ if env_info['Paddle compiled with cuda'] and env_info['GPUs used'] \ else fluid.CPUPlace() if args.dataset not in DATASETS: raise Exception( '`--dataset` is invalid. it should be one of {}'.format( str(list(DATASETS.keys())))) dataset = DATASETS[args.dataset] with fluid.dygraph.guard(places): test_transforms = T.Compose([T.Resize(args.input_size), T.Normalize()]) test_dataset = dataset(dataset_root=args.dataset_root, transforms=test_transforms, mode='test') model = manager.MODELS[args.model_name]( num_classes=test_dataset.num_classes) infer(model, model_dir=args.model_dir, test_dataset=test_dataset, save_dir=args.save_dir)
def parse_args(): parser = argparse.ArgumentParser(description='Model training') # params of model parser.add_argument( '--model_name', dest='model_name', help='Model type for testing, which is one of {}'.format( str(list(manager.MODELS.components_dict.keys()))), type=str, default='UNet') # params of infer parser.add_argument( '--dataset', dest='dataset', help="The dataset you want to test, which is one of {}".format( str(list(DATASETS.keys()))), type=str, default='OpticDiscSeg') parser.add_argument('--dataset_root', dest='dataset_root', help="dataset root directory", type=str, default=None) # params of prediction parser.add_argument("--input_size", dest="input_size", help="The image size for net inputs.", nargs=2, default=[512, 512], type=int) parser.add_argument('--batch_size', dest='batch_size', help='Mini batch size', type=int, default=2) parser.add_argument('--model_dir', dest='model_dir', help='The path of model for evaluation', type=str, default=None) parser.add_argument('--save_dir', dest='save_dir', help='The directory for saving the inference results', type=str, default='./output/result') return parser.parse_args()
def parse_args(): parser = argparse.ArgumentParser(description='Model evaluation') # params of model parser.add_argument( '--model_name', dest='model_name', help='Model type for evaluation, which is one of {}'.format( str(list(manager.MODELS.components_dict.keys()))), type=str, default='UNet') # params of dataset parser.add_argument( '--dataset', dest='dataset', help="The dataset you want to evaluation, which is one of {}".format( str(list(DATASETS.keys()))), type=str, default='OpticDiscSeg') parser.add_argument('--dataset_root', dest='dataset_root', help="dataset root directory", type=str, default=None) # params of evaluate parser.add_argument("--input_size", dest="input_size", help="The image size for net inputs.", nargs=2, default=[512, 512], type=int) parser.add_argument('--model_dir', dest='model_dir', help='The path of model for evaluation', type=str, default=None) return parser.parse_args()
def parse_args(): parser = argparse.ArgumentParser(description='Model training') # params of model parser.add_argument( '--model_name', dest='model_name', help='Model type for training, which is one of {}'.format( str(list(MODELS.keys()))), type=str, default='UNet') # params of dataset parser.add_argument( '--dataset', dest='dataset', help="The dataset you want to train, which is one of {}".format( str(list(DATASETS.keys()))), type=str, default='OpticDiscSeg') parser.add_argument('--dataset_root', dest='dataset_root', help="dataset root directory", type=str, default=None) # params of training parser.add_argument("--input_size", dest="input_size", help="The image size for net inputs.", nargs=2, default=[512, 512], type=int) parser.add_argument('--num_epochs', dest='num_epochs', help='Number epochs for training', type=int, default=100) parser.add_argument('--batch_size', dest='batch_size', help='Mini batch size of one gpu or cpu', type=int, default=2) parser.add_argument('--learning_rate', dest='learning_rate', help='Learning rate', type=float, default=0.01) parser.add_argument('--pretrained_model', dest='pretrained_model', help='The path of pretrained model', type=str, default=None) parser.add_argument('--resume_model', dest='resume_model', help='The path of resume model', type=str, default=None) parser.add_argument('--save_interval_epochs', dest='save_interval_epochs', help='The interval epochs for save a model snapshot', type=int, default=5) parser.add_argument('--save_dir', dest='save_dir', help='The directory for saving the model snapshot', type=str, default='./output') parser.add_argument('--num_workers', dest='num_workers', help='Num workers for data loader', type=int, default=0) parser.add_argument('--do_eval', dest='do_eval', help='Eval while training', action='store_true') parser.add_argument('--log_steps', dest='log_steps', help='Display logging information at every log_steps', default=10, type=int) parser.add_argument( '--use_vdl', dest='use_vdl', help='Whether to record the data to VisualDL during training', action='store_true') return parser.parse_args()
def main(args): env_info = get_environ_info() places = fluid.CUDAPlace(ParallelEnv().dev_id) \ if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \ else fluid.CPUPlace() if args.dataset not in DATASETS: raise Exception( '`--dataset` is invalid. it should be one of {}'.format( str(list(DATASETS.keys())))) dataset = DATASETS[args.dataset] with fluid.dygraph.guard(places): # Creat dataset reader train_transforms = T.Compose([ T.RandomHorizontalFlip(0.5), T.ResizeStepScaling(0.5, 2.0, 0.25), T.RandomPaddingCrop(args.input_size), T.RandomDistort(), T.Normalize(), ]) train_dataset = dataset(dataset_root=args.dataset_root, transforms=train_transforms, mode='train') eval_dataset = None if args.do_eval: eval_transforms = T.Compose([T.Normalize()]) eval_dataset = dataset(dataset_root=args.dataset_root, transforms=eval_transforms, mode='val') if args.model_name not in MODELS: raise Exception( '`--model_name` is invalid. it should be one of {}'.format( str(list(MODELS.keys())))) model = MODELS[args.model_name](num_classes=train_dataset.num_classes) # Creat optimizer # todo, may less one than len(loader) num_steps_each_epoch = len(train_dataset) // (args.batch_size * ParallelEnv().nranks) decay_step = args.num_epochs * num_steps_each_epoch lr_decay = fluid.layers.polynomial_decay(args.learning_rate, decay_step, end_learning_rate=0, power=0.9) optimizer = fluid.optimizer.Momentum( lr_decay, momentum=0.9, parameter_list=model.parameters(), regularization=fluid.regularizer.L2Decay( regularization_coeff=4e-5)) train(model, train_dataset, places=places, eval_dataset=eval_dataset, optimizer=optimizer, save_dir=args.save_dir, num_epochs=args.num_epochs, batch_size=args.batch_size, pretrained_model=args.pretrained_model, resume_model=args.resume_model, save_interval_epochs=args.save_interval_epochs, log_steps=args.log_steps, num_classes=train_dataset.num_classes, num_workers=args.num_workers, use_vdl=args.use_vdl)
def main(args): env_info = get_environ_info() info = ['{}: {}'.format(k, v) for k, v in env_info.items()] info = '\n'.join(['\n', format('Environment Information', '-^48s')] + info + ['-' * 48]) logger.info(info) places = fluid.CUDAPlace(ParallelEnv().dev_id) \ if env_info['Paddle compiled with cuda'] and env_info['GPUs used'] \ else fluid.CPUPlace() if args.dataset not in DATASETS: raise Exception( '`--dataset` is invalid. it should be one of {}'.format( str(list(DATASETS.keys())))) dataset = DATASETS[args.dataset] with fluid.dygraph.guard(places): # Creat dataset reader train_transforms = T.Compose([ T.RandomHorizontalFlip(0.5), T.ResizeStepScaling(0.5, 2.0, 0.25), T.RandomPaddingCrop(args.input_size), T.RandomDistort(), T.Normalize(), ]) train_dataset = dataset(dataset_root=args.dataset_root, transforms=train_transforms, mode='train') eval_dataset = None if args.do_eval: eval_transforms = T.Compose([T.Normalize()]) eval_dataset = dataset(dataset_root=args.dataset_root, transforms=eval_transforms, mode='val') model = manager.MODELS[args.model_name]( num_classes=train_dataset.num_classes, pretrained_model=args.pretrained_model) # Creat optimizer # todo, may less one than len(loader) num_iters_each_epoch = len(train_dataset) // (args.batch_size * ParallelEnv().nranks) lr_decay = fluid.layers.polynomial_decay(args.learning_rate, args.iters, end_learning_rate=0, power=0.9) optimizer = fluid.optimizer.Momentum( lr_decay, momentum=0.9, parameter_list=model.parameters(), regularization=fluid.regularizer.L2Decay( regularization_coeff=4e-5)) train(model, train_dataset, places=places, eval_dataset=eval_dataset, optimizer=optimizer, save_dir=args.save_dir, iters=args.iters, batch_size=args.batch_size, resume_model=args.resume_model, save_interval_iters=args.save_interval_iters, log_iters=args.log_iters, num_classes=train_dataset.num_classes, num_workers=args.num_workers, use_vdl=args.use_vdl)