def test_balance_ctrl_talos_gazebo(robot,
                                   use_real_vel=True,
                                   use_real_base_state=False,
                                   startSoT=True):
    # BUILD THE STANDARD GRAPH
    conf = get_sim_conf()
    robot = main_v3(robot, startSoT=False, go_half_sitting=False, conf=conf)

    # force current measurements to zero
    robot.ctrl_manager.i_measured.value = NJ * (0.0, )
    #robot.current_ctrl.i_measured.value = NJ*(0.0,);
    robot.filters.current_filter.x.value = NJ * (0.0, )

    # BYPASS TORQUE CONTROLLER
    plug(robot.inv_dyn.tau_des, robot.ctrl_manager.ctrl_torque)

    # CREATE SIGNALS WITH ROBOT STATE WITH CORRECT SIZE (36)
    robot.q = Selec_of_vector("q")
    plug(robot.device.robotState, robot.q.sin)
    robot.q.selec(0, NJ + 6)
    plug(robot.q.sout, robot.pos_ctrl.base6d_encoders)
    plug(robot.q.sout, robot.traj_gen.base6d_encoders)
    #plug(robot.q.sout,              robot.estimator_ft.base6d_encoders);

    robot.ros = RosPublish('rosPublish')
    robot.device.after.addDownsampledSignal('rosPublish.trigger', 1)

    # BYPASS JOINT VELOCITY ESTIMATOR
    if (use_real_vel):
        robot.dq = Selec_of_vector("dq")
        #plug(robot.device.robotVelocity, robot.dq.sin); # to check robotVelocity empty
        plug(robot.device.velocity, robot.dq.sin)
        robot.dq.selec(6, NJ + 6)
        plug(robot.dq.sout, robot.pos_ctrl.jointsVelocities)
        # generate seg fault
        plug(robot.dq.sout, robot.base_estimator.joint_velocities)
        plug(robot.device.gyrometer, robot.base_estimator.gyroscope)

    # BYPASS BASE ESTIMATOR
    robot.v = Selec_of_vector("v")
    #plug(robot.device.robotVelocity, robot.dq.sin); # to check robotVelocity empty
    plug(robot.device.velocity, robot.dq.sin)
    robot.v.selec(0, NJ + 6)
    if (use_real_base_state):
        plug(robot.q.sout, robot.inv_dyn.q)
        plug(robot.v.sout, robot.inv_dyn.v)
    if (startSoT):
        start_sot()
        # RESET FORCE/TORQUE SENSOR OFFSET
        # sleep(10*robot.timeStep);
        #robot.estimator_ft.setFTsensorOffsets(24*(0.0,));

    return robot
def test_balance_ctrl_openhrp(robot, use_real_vel=True, use_real_base_state=False):
    # BUILD THE STANDARD GRAPH
    conf = get_sim_conf();
    robot = main_v3(robot, startSoT=False, go_half_sitting=False, conf=conf);
    
    # force current measurements to zero
    robot.ctrl_manager.currents.value = NJ*(0.0,);
    
    # BYPASS TORQUE CONTROLLER
    plug(robot.inv_dyn.tau_des,     robot.ctrl_manager.ctrl_torque);
    
    # CREATE SIGNALS WITH ROBOT STATE WITH CORRECT SIZE (36)
    robot.q = Selec_of_vector("q");
    plug(robot.device.robotState, robot.q.sin);
    robot.q.selec(0, NJ+6);
    plug(robot.q.sout,              robot.pos_ctrl.base6d_encoders);
    plug(robot.q.sout,              robot.traj_gen.base6d_encoders);
    plug(robot.q.sout,              robot.estimator_ft.base6d_encoders);
    plug(robot.q.sout,              robot.ctrl_manager.base6d_encoders);
    plug(robot.q.sout,              robot.torque_ctrl.base6d_encoders);
    
    robot.ros = RosPublish('rosPublish');
    robot.device.after.addDownsampledSignal('rosPublish.trigger',1);
    
    # BYPASS JOINT VELOCITY ESTIMATOR
    if(use_real_vel):
        robot.dq = Selec_of_vector("dq");
        plug(robot.device.robotVelocity, robot.dq.sin);
        robot.dq.selec(6, NJ+6);
        plug(robot.dq.sout,             robot.pos_ctrl.jointsVelocities);
        plug(robot.dq.sout,             robot.base_estimator.joint_velocities);

    # BYPASS BASE ESTIMATOR
    robot.v = Selec_of_vector("v");
    plug(robot.device.robotVelocity, robot.v.sin);
    robot.v.selec(0, NJ+6);
    if(use_real_base_state):
        plug(robot.q.sout,              robot.inv_dyn.q);
        plug(robot.v.sout,              robot.inv_dyn.v);
    
#    start_sot();
#    
#    # RESET FORCE/TORQUE SENSOR OFFSET
#    sleep(10*robot.timeStep);
#    robot.estimator_ft.setFTsensorOffsets(24*(0.0,));
    
    return robot;
예제 #3
0
def create_floatingBase(robot):
    from dynamic_graph.sot.application.state_observation.initializations.hrp2_model_base_flex_estimator_imu_force import FromLocalToGLobalFrame
    floatingBase = FromLocalToGLobalFrame(robot.flex_est, "FloatingBase")
    plug(robot.ff_locator.freeflyer_aa, floatingBase.sinPos)

    from dynamic_graph.sot.core import Selec_of_vector
    base_vel_no_flex = Selec_of_vector('base_vel_no_flex')
    plug(robot.ff_locator.v, base_vel_no_flex.sin)
    base_vel_no_flex.selec(0, 6)
    plug(base_vel_no_flex.sout, floatingBase.sinVel)
    return floatingBase
예제 #4
0
def main(dt=0.001, delay=0.01):
    np.set_printoptions(precision=3, suppress=True)
    COM_DES_1 = (0.012, 0.1, 0.81)
    COM_DES_2 = (0.012, 0.0, 0.81)
    dt = conf.dt
    q0 = conf.q0_urdf
    v0 = conf.v0
    nv = v0.shape[0]

    simulator = Simulator('hrp2_sim', q0, v0, conf.fMin, conf.mu, dt,
                          conf.model_path, conf.urdfFileName)
    simulator.ENABLE_TORQUE_LIMITS = conf.FORCE_TORQUE_LIMITS
    simulator.ENABLE_FORCE_LIMITS = conf.ENABLE_FORCE_LIMITS
    simulator.ENABLE_JOINT_LIMITS = conf.FORCE_JOINT_LIMITS
    simulator.ACCOUNT_FOR_ROTOR_INERTIAS = conf.ACCOUNT_FOR_ROTOR_INERTIAS
    simulator.VIEWER_DT = conf.DT_VIEWER
    simulator.CONTACT_FORCE_ARROW_SCALE = 2e-3
    simulator.verb = 0
    robot = simulator.r

    device = create_device(conf.q0_sot)

    from dynamic_graph.sot.core import Selec_of_vector
    joint_vel = Selec_of_vector("joint_vel")
    plug(device.velocity, joint_vel.sin)
    joint_vel.selec(6, 36)

    from dynamic_graph.sot.torque_control.free_flyer_locator import FreeFlyerLocator
    ff_locator = FreeFlyerLocator("ffLocator")
    plug(device.state, ff_locator.base6d_encoders)
    plug(joint_vel.sout, ff_locator.joint_velocities)
    ff_locator.init(conf.urdfFileName)

    #    ff_locator      = create_free_flyer_locator(device, conf.urdfFileName);
    #    traj_gen        = create_trajectory_generator(device, dt);
    traj_gen = JointTrajectoryGenerator("jtg")
    plug(device.state, traj_gen.base6d_encoders)
    traj_gen.init(dt)
    #    estimator       = create_estimator(device, dt, delay, traj_gen);
    #    torque_ctrl     = create_torque_controller(device, estimator);
    #    pos_ctrl        = create_position_controller(device, estimator, dt, traj_gen);

    ctrl = InverseDynamicsBalanceController("invDynBalCtrl")
    plug(device.state, ctrl.q)

    plug(traj_gen.q, ctrl.posture_ref_pos)
    plug(traj_gen.dq, ctrl.posture_ref_vel)
    plug(traj_gen.ddq, ctrl.posture_ref_acc)
    #    plug(estimator.contactWrenchRightSole,  ctrl.wrench_right_foot);
    #    plug(estimator.contactWrenchLeftSole,   ctrl.wrench_left_foot);
    #    plug(ctrl.tau_des,                      torque_ctrl.jointsTorquesDesired);
    #    plug(ctrl.tau_des,                      estimator.tauDes);

    ctrl.com_ref_pos.value = to_tuple(robot.com(q0))
    ctrl.com_ref_pos.value = COM_DES_1
    ctrl.com_ref_vel.value = 3 * (0.0, )
    ctrl.com_ref_acc.value = 3 * (0.0, )

    ctrl.rotor_inertias.value = conf.ROTOR_INERTIAS
    ctrl.gear_ratios.value = conf.GEAR_RATIOS
    ctrl.contact_normal.value = (0.0, 0.0, 1.0)
    ctrl.contact_points.value = conf.RIGHT_FOOT_CONTACT_POINTS
    ctrl.f_min.value = conf.fMin
    ctrl.mu.value = conf.mu[0]
    ctrl.weight_contact_forces.value = (1e2, 1e2, 1e0, 1e3, 1e3, 1e3)
    ctrl.kp_com.value = 3 * (conf.kp_com, )
    ctrl.kd_com.value = 3 * (conf.kd_com, )
    ctrl.kp_constraints.value = 6 * (conf.kp_constr, )
    ctrl.kd_constraints.value = 6 * (conf.kd_constr, )
    ctrl.kp_posture.value = 30 * (conf.kp_posture, )
    ctrl.kd_posture.value = 30 * (conf.kd_posture, )
    ctrl.kp_pos.value = 30 * (0 * conf.kp_pos, )
    ctrl.kd_pos.value = 30 * (0 * conf.kd_pos, )

    ctrl.w_com.value = conf.w_com
    ctrl.w_forces.value = conf.w_forces
    ctrl.w_posture.value = conf.w_posture
    ctrl.w_base_orientation.value = conf.w_base_orientation
    ctrl.w_torques.value = conf.w_torques

    ctrl.init(dt, conf.urdfFileName)
    ctrl.active_joints.value = conf.active_joints

    #    ctrl_manager    = create_ctrl_manager(device, torque_ctrl, pos_ctrl, ctrl, estimator, dt);
    #    plug(device.velocity,       torque_ctrl.jointsVelocities);
    plug(device.velocity, ctrl.v)
    plug(ctrl.dv_des, device.control)
    t = 0.0
    v = mat_zeros(nv)
    dv = mat_zeros(nv)
    x_rf = robot.framePosition(
        robot.model.getFrameId('RLEG_JOINT5')).translation
    x_lf = robot.framePosition(
        robot.model.getFrameId('LLEG_JOINT5')).translation

    simulator.viewer.addSphere('zmp_rf', 0.01, mat_zeros(3), mat_zeros(3),
                               (0.8, 0.3, 1.0, 1.0), 'OFF')
    simulator.viewer.addSphere('zmp_lf', 0.01, mat_zeros(3), mat_zeros(3),
                               (0.8, 0.3, 1.0, 1.0), 'OFF')
    simulator.viewer.addSphere('zmp', 0.01, mat_zeros(3), mat_zeros(3),
                               (0.8, 0.8, 0.3, 1.0), 'OFF')

    for i in range(conf.MAX_TEST_DURATION):
        #        if(norm(dv[6:24]) > 1e-8):
        #            print "ERROR acceleration of blocked axes is not zero:", norm(dv[6:24]);

        ff_locator.base6dFromFoot_encoders.recompute(i)
        ff_locator.v.recompute(i)

        device.increment(dt)

        if (i == 1500):
            ctrl.com_ref_pos.value = COM_DES_2
        if (i % 30 == 0):
            q = np.matrix(device.state.value).T
            q_urdf = config_sot_to_urdf(q)
            simulator.viewer.updateRobotConfig(q_urdf)

            ctrl.f_des_right_foot.recompute(i)
            ctrl.f_des_left_foot.recompute(i)
            f_rf = np.matrix(ctrl.f_des_right_foot.value).T
            f_lf = np.matrix(ctrl.f_des_left_foot.value).T
            simulator.updateContactForcesInViewer(['rf', 'lf'], [x_rf, x_lf],
                                                  [f_rf, f_lf])

            ctrl.zmp_des_right_foot.recompute(i)
            ctrl.zmp_des_left_foot.recompute(i)
            ctrl.zmp_des.recompute(i)
            zmp_rf = np.matrix(ctrl.zmp_des_right_foot.value).T
            zmp_lf = np.matrix(ctrl.zmp_des_left_foot.value).T
            zmp = np.matrix(ctrl.zmp_des.value).T
            simulator.viewer.updateObjectConfig(
                'zmp_rf', (zmp_rf[0, 0], zmp_rf[1, 0], 0., 0., 0., 0., 1.))
            simulator.viewer.updateObjectConfig(
                'zmp_lf', (zmp_lf[0, 0], zmp_lf[1, 0], 0., 0., 0., 0., 1.))
            simulator.viewer.updateObjectConfig(
                'zmp', (zmp[0, 0], zmp[1, 0], 0., 0., 0., 0., 1.))

            ctrl.com.recompute(i)
            com = np.matrix(ctrl.com.value).T
            com[2, 0] = 0.0
            simulator.updateComPositionInViewer(com)
        if (i % 100 == 0):
            ctrl.com.recompute(i)
            com = np.matrix(ctrl.com.value).T
            v = np.matrix(device.velocity.value).T
            dv = np.matrix(ctrl.dv_des.value).T
            ctrl.zmp_des_right_foot_local.recompute(i)
            ctrl.zmp_des_left_foot_local.recompute(i)
            ctrl.zmp_des.recompute(i)
            zmp_rf = np.matrix(ctrl.zmp_des_right_foot_local.value).T
            zmp_lf = np.matrix(ctrl.zmp_des_left_foot_local.value).T
            zmp = np.matrix(ctrl.zmp_des.value).T
            print "t=%.3f dv=%.1f v=%.1f com=" % (t, norm(dv), norm(v)), com.T
            print "zmp_lf", np.array([-f_lf[4, 0], f_lf[3, 0]
                                      ]) / f_lf[2, 0], zmp_lf.T
            print "zmp_rf", np.array([-f_rf[4, 0], f_rf[3, 0]
                                      ]) / f_rf[2, 0], zmp_rf.T, '\n'


#            print "Base pos (real)", device.state.value[:3];
#            print "Base pos (esti)", ff_locator.base6dFromFoot_encoders.value[:3], '\n';
#            print "Base velocity (real)", np.array(device.velocity.value[:6]);
#            print "Base velocity (esti)", np.array(ff_locator.v.value[:6]), '\n';

        if (i == 2):
            ctrl_manager = ControlManager("ctrl_man")
            ctrl_manager.resetProfiler()
        t += dt
        sleep(dt)

    return (simulator, ctrl)
예제 #5
0
taskPosture.add(taskPosture.feature.name)

# Create the sequence player
aSimpleSeqPlay = SimpleSeqPlay('aSimpleSeqPlay')
aSimpleSeqPlay.load(
    "/home/ostasse/devel-src/robotpkg-test3/install/share/pyrene-motions/identification/OEM_arms_60s_500Hz"
)
aSimpleSeqPlay.setTimeToStart(10.0)
# Connects the sequence player to the posture task
from dynamic_graph.sot.core import Selec_of_vector
from dynamic_graph import plug

plug(aSimpleSeqPlay.posture, taskPosture.featureDes.errorIN)

# Connects the dynamics to the current feature of the posture task
getPostureValue = Selec_of_vector("current_posture")
getPostureValue.selec(6, robotDim)
plug(robot.dynamic.position, getPostureValue.sin)
plug(getPostureValue.sout, taskPosture.feature.errorIN)
plug(getPostureValue.sout, aSimpleSeqPlay.currentPosture)

# Set the gain of the posture task
setGain(taskPosture.gain, (4.9, 0.9, 0.01, 0.9))
plug(taskPosture.gain.gain, taskPosture.controlGain)
plug(taskPosture.error, taskPosture.gain.error)

# Create the solver
from dynamic_graph.sot.core import SOT
sot = SOT('sot')
sot.setSize(robot.dynamic.getDimension())
plug(sot.control, robot.device.control)
예제 #6
0
def create_balance_controller(robot,
                              conf,
                              motor_params,
                              dt,
                              robot_name='robot'):
    from dynamic_graph.sot.torque_control.inverse_dynamics_balance_controller import InverseDynamicsBalanceController
    ctrl = InverseDynamicsBalanceController("invDynBalCtrl")

    try:
        plug(robot.base_estimator.q, ctrl.q)
        plug(robot.base_estimator.v, ctrl.v)
    except:
        plug(robot.ff_locator.base6dFromFoot_encoders, ctrl.q)
        plug(robot.ff_locator.v, ctrl.v)

    try:
        from dynamic_graph.sot.core import Selec_of_vector
        robot.ddq_des = Selec_of_vector('ddq_des')
        plug(ctrl.dv_des, robot.ddq_des.sin)
        robot.ddq_des.selec(6, NJ + 6)

    except:
        print "WARNING: Could not connect dv_des from BalanceController to ForceTorqueEstimator"

    plug(ctrl.tau_des, robot.torque_ctrl.jointsTorquesDesired)

    plug(ctrl.right_foot_pos, robot.rf_traj_gen.initial_value)
    plug(robot.rf_traj_gen.x, ctrl.rf_ref_pos)
    plug(robot.rf_traj_gen.dx, ctrl.rf_ref_vel)
    plug(robot.rf_traj_gen.ddx, ctrl.rf_ref_acc)

    plug(ctrl.left_foot_pos, robot.lf_traj_gen.initial_value)
    plug(robot.lf_traj_gen.x, ctrl.lf_ref_pos)
    plug(robot.lf_traj_gen.dx, ctrl.lf_ref_vel)
    plug(robot.lf_traj_gen.ddx, ctrl.lf_ref_acc)

    plug(robot.traj_gen.q, ctrl.posture_ref_pos)
    plug(robot.traj_gen.dq, ctrl.posture_ref_vel)
    plug(robot.traj_gen.ddq, ctrl.posture_ref_acc)
    plug(robot.com_traj_gen.x, ctrl.com_ref_pos)
    plug(robot.com_traj_gen.dx, ctrl.com_ref_vel)
    plug(robot.com_traj_gen.ddx, ctrl.com_ref_acc)

    #    plug(robot.rf_force_traj_gen.x,               ctrl.f_ref_right_foot);
    #    plug(robot.lf_force_traj_gen.x,               ctrl.f_ref_left_foot);

    # rather than giving to the controller the values of gear ratios and rotor inertias
    # it is better to compute directly their product in python and pass the result
    # to the C++ entity, because otherwise we get a loss of precision
    #    ctrl.rotor_inertias.value = conf.ROTOR_INERTIAS;
    #    ctrl.gear_ratios.value = conf.GEAR_RATIOS;
    ctrl.rotor_inertias.value = tuple([
        g * g * r
        for (g,
             r) in zip(motor_params.GEAR_RATIOS, motor_params.ROTOR_INERTIAS)
    ])
    ctrl.gear_ratios.value = NJ * (1.0, )
    ctrl.contact_normal.value = conf.FOOT_CONTACT_NORMAL
    ctrl.contact_points.value = conf.RIGHT_FOOT_CONTACT_POINTS
    ctrl.f_min.value = conf.fMin
    ctrl.f_max_right_foot.value = conf.fMax
    ctrl.f_max_left_foot.value = conf.fMax
    ctrl.mu.value = conf.mu[0]
    ctrl.weight_contact_forces.value = (1e2, 1e2, 1e0, 1e3, 1e3, 1e3)
    ctrl.kp_com.value = 3 * (conf.kp_com, )
    ctrl.kd_com.value = 3 * (conf.kd_com, )
    ctrl.kp_constraints.value = 6 * (conf.kp_constr, )
    ctrl.kd_constraints.value = 6 * (conf.kd_constr, )
    ctrl.kp_feet.value = 6 * (conf.kp_feet, )
    ctrl.kd_feet.value = 6 * (conf.kd_feet, )
    ctrl.kp_posture.value = conf.kp_posture
    ctrl.kd_posture.value = conf.kd_posture
    ctrl.kp_pos.value = conf.kp_pos
    ctrl.kd_pos.value = conf.kd_pos

    ctrl.w_com.value = conf.w_com
    ctrl.w_feet.value = conf.w_feet
    ctrl.w_forces.value = conf.w_forces
    ctrl.w_posture.value = conf.w_posture
    ctrl.w_base_orientation.value = conf.w_base_orientation
    ctrl.w_torques.value = conf.w_torques

    ctrl.init(dt, robot_name)

    return ctrl
예제 #7
0
def create_encoders(robot):
    from dynamic_graph.sot.core import Selec_of_vector
    encoders = Selec_of_vector('qn')
    plug(robot.device.robotState, encoders.sin)
    encoders.selec(6, NJ + 6)
    return encoders
예제 #8
0
    def __init__(self, robot, name='flextimatorEncoders'):
        DGIMUModelBaseFlexEstimation.__init__(self, name)
        self.setSamplingPeriod(0.005)
        self.robot = robot

        # Covariances
        self.setProcessNoiseCovariance(
            matrixToTuple(
                np.diag((1e-8, ) * 12 + (1e-4, ) * 3 + (1e-4, ) * 3 +
                        (1e-4, ) * 3 + (1e-4, ) * 3 + (1.e-2, ) * 6 +
                        (1e-15, ) * 2 + (1.e-8, ) * 3)))
        self.setMeasurementNoiseCovariance(
            matrixToTuple(np.diag((1e-3, ) * 3 + (1e-6, ) * 3)))
        self.setUnmodeledForceVariance(1e-13)
        self.setForceVariance(1e-4)
        self.setAbsolutePosVariance(1e-4)

        # Contact model definition
        self.setContactModel(1)
        self.setKfe(matrixToTuple(np.diag((40000, 40000, 40000))))
        self.setKfv(matrixToTuple(np.diag((600, 600, 600))))
        self.setKte(matrixToTuple(np.diag((600, 600, 600))))
        self.setKtv(matrixToTuple(np.diag((60, 60, 60))))

        #Estimator interface
        self.interface = EstimatorInterface(name + "EstimatorInterface")
        self.interface.setLeftHandSensorTransformation((0., 0., 1.57))
        self.interface.setRightHandSensorTransformation((0., 0., 1.57))
        self.interface.setFDInertiaDot(True)

        # State and measurement definition
        self.interface.setWithUnmodeledMeasurements(False)
        self.interface.setWithModeledForces(True)
        self.interface.setWithAbsolutePose(False)
        self.setWithComBias(False)

        # Contacts forces
        plug(self.robot.device.forceLLEG, self.interface.force_lf)
        plug(self.robot.device.forceRLEG, self.interface.force_rf)
        plug(self.robot.device.forceLARM, self.interface.force_lh)
        plug(self.robot.device.forceRARM, self.interface.force_rh)

        # Selecting robotState
        self.robot.device.robotState.value = 46 * (0., )
        self.robotState = Selec_of_vector('robotState')
        plug(self.robot.device.robotState, self.robotState.sin)
        self.robotState.selec(0, 36)

        # Reconstruction of the position of the free flyer from encoders

        # Create dynamic with the free flyer at the origin of the control frame
        self.robot.dynamicOdo = self.createDynamic(self.robotState.sout,
                                                   '_dynamicOdo')
        self.robot.dynamicOdo.inertia.recompute(1)
        self.robot.dynamicOdo.waist.recompute(1)

        # Reconstruction of the position of the contacts in dynamicOdo
        self.leftFootPosOdo = Multiply_of_matrixHomo(name + "leftFootPosOdo")
        plug(self.robot.dynamicOdo.signal('left-ankle'),
             self.leftFootPosOdo.sin1)
        self.leftFootPosOdo.sin2.value = self.robot.forceSensorInLeftAnkle
        self.rightFootPosOdo = Multiply_of_matrixHomo(name + "rightFootPosOdo")
        plug(self.robot.dynamicOdo.signal('right-ankle'),
             self.rightFootPosOdo.sin1)
        self.rightFootPosOdo.sin2.value = self.robot.forceSensorInRightAnkle

        # Odometry
        self.odometry = Odometry(name + 'odometry')
        plug(self.robot.frames['leftFootForceSensor'].position,
             self.odometry.leftFootPositionRef)
        plug(self.robot.frames['rightFootForceSensor'].position,
             self.odometry.rightFootPositionRef)
        plug(self.rightFootPosOdo.sout, self.odometry.rightFootPositionIn)
        plug(self.leftFootPosOdo.sout, self.odometry.leftFootPositionIn)
        plug(self.robot.device.forceLLEG, self.odometry.force_lf)
        plug(self.robot.device.forceRLEG, self.odometry.force_rf)
        self.odometry.setLeftFootPosition(
            self.robot.frames['leftFootForceSensor'].position.value)
        self.odometry.setRightFootPosition(
            self.robot.frames['rightFootForceSensor'].position.value)
        plug(self.interface.stackOfSupportContacts,
             self.odometry.stackOfSupportContacts)

        # Create dynamicEncoders
        self.robotStateWoFF = Selec_of_vector('robotStateWoFF')
        plug(self.robot.device.robotState, self.robotStateWoFF.sin)
        self.robotStateWoFF.selec(6, 36)
        self.stateEncoders = Stack_of_vector(name + 'stateEncoders')
        plug(self.odometry.freeFlyer, self.stateEncoders.sin1)
        plug(self.robotStateWoFF.sout, self.stateEncoders.sin2)
        self.stateEncoders.selec1(0, 6)
        self.stateEncoders.selec2(0, 30)
        self.robot.dynamicEncoders = self.createDynamic(
            self.stateEncoders.sout, '_dynamicEncoders')
        #	self.robot.dynamicEncoders=self.createDynamic(self.robotState.sout,'_dynamicEncoders')
        #	plug(self.odometry.freeFlyer,self.robot.dynamicEncoders.ffposition)
        #	self.robot.dynamicEncoders=self.createDynamic(self.robot.device.state,'_dynamicEncoders')

        # Reconstruction of the position of the contacts in dynamicEncoders
        self.leftFootPos = Multiply_of_matrixHomo("leftFootPos")
        plug(self.robot.dynamicEncoders.signal('left-ankle'),
             self.leftFootPos.sin1)
        self.leftFootPos.sin2.value = self.robot.forceSensorInLeftAnkle
        self.rightFootPos = Multiply_of_matrixHomo("rightFootPos")
        plug(self.robot.dynamicEncoders.signal('right-ankle'),
             self.rightFootPos.sin1)
        self.rightFootPos.sin2.value = self.robot.forceSensorInRightAnkle

        # Contacts velocities
        self.leftFootVelocity = Multiply_matrix_vector('leftFootVelocity')
        plug(self.robot.frames['leftFootForceSensor'].jacobian,
             self.leftFootVelocity.sin1)
        plug(self.robot.dynamicEncoders.velocity, self.leftFootVelocity.sin2)
        self.rightFootVelocity = Multiply_matrix_vector('rightFootVelocity')
        plug(self.robot.frames['rightFootForceSensor'].jacobian,
             self.rightFootVelocity.sin1)
        plug(self.robot.dynamicEncoders.velocity, self.rightFootVelocity.sin2)

        # Contacts positions and velocities
        plug(self.leftFootPos.sout, self.interface.position_lf)
        plug(self.rightFootPos.sout, self.interface.position_rf)
        plug(self.leftFootVelocity.sout, self.interface.velocity_lf)
        plug(self.rightFootVelocity.sout, self.interface.velocity_rf)

        plug(self.robot.dynamicEncoders.signal('right-wrist'),
             self.interface.position_lh)
        plug(self.robot.dynamicEncoders.signal('left-wrist'),
             self.interface.position_rh)

        # Compute contacts number
        plug(self.interface.supportContactsNbr, self.contactNbr)

        # Contacts model and config
        plug(self.interface.contactsModel, self.contactsModel)
        self.setWithConfigSignal(True)
        plug(self.interface.config, self.config)

        # Drift
        self.drift = DriftFromMocap(name + 'Drift')

        # Compute measurement vector
        plug(self.robot.device.accelerometer, self.interface.accelerometer)
        plug(self.robot.device.gyrometer, self.interface.gyrometer)
        plug(self.drift.driftVector, self.interface.drift)
        plug(self.interface.measurement, self.measurement)

        # Input reconstruction

        # IMU Vector
        # Creating an operational point for the IMU
        self.robot.dynamicEncoders.createJacobian(name + 'ChestJ_OpPoint',
                                                  'chest')
        self.imuOpPoint = OpPointModifier(name + 'IMU_oppoint')
        self.imuOpPoint.setTransformation(
            matrixToTuple(
                np.linalg.inv(np.matrix(
                    self.robot.dynamicEncoders.chest.value)) *
                np.matrix(self.robot.frames['accelerometer'].position.value)))
        self.imuOpPoint.setEndEffector(False)
        plug(self.robot.dynamicEncoders.chest, self.imuOpPoint.positionIN)
        plug(self.robot.dynamicEncoders.signal(name + 'ChestJ_OpPoint'),
             self.imuOpPoint.jacobianIN)
        # IMU position
        self.PosAccelerometer = Multiply_of_matrixHomo(name +
                                                       "PosAccelerometer")
        plug(self.robot.dynamicEncoders.chest, self.PosAccelerometer.sin1)
        self.PosAccelerometer.sin2.value = matrixToTuple(
            self.robot.accelerometerPosition)
        self.inputPos = MatrixHomoToPoseUTheta(name + 'InputPosition')
        plug(self.PosAccelerometer.sout, self.inputPos.sin)
        # IMU velocity
        self.inputVel = Multiply_matrix_vector(name + 'InputVelocity')
        plug(self.imuOpPoint.jacobian, self.inputVel.sin1)
        plug(self.robot.dynamicEncoders.velocity, self.inputVel.sin2)
        # Concatenate
        self.inputPosVel = Stack_of_vector(name + 'InputPosVel')
        plug(self.inputPos.sout, self.inputPosVel.sin1)
        plug(self.inputVel.sout, self.inputPosVel.sin2)
        self.inputPosVel.selec1(0, 6)
        self.inputPosVel.selec2(0, 6)
        # IMU Vector
        self.IMUVector = PositionStateReconstructor(name + 'EstimatorInput')
        plug(self.inputPosVel.sout, self.IMUVector.sin)
        self.IMUVector.inputFormat.value = '001111'
        self.IMUVector.outputFormat.value = '011111'
        self.IMUVector.setFiniteDifferencesInterval(2)
        # CoM and derivatives
        self.comIn = self.robot.dynamicEncoders.com
        self.comVector = PositionStateReconstructor(name + 'ComVector')
        plug(self.comIn, self.comVector.sin)
        self.comVector.inputFormat.value = '000001'
        self.comVector.outputFormat.value = '010101'
        self.comVector.setFiniteDifferencesInterval(20)
        # Compute derivative of Angular Momentum
        self.angMomDerivator = Derivator_of_Vector(name + 'angMomDerivator')
        plug(self.robot.dynamicEncoders.angularmomentum,
             self.angMomDerivator.sin)
        self.angMomDerivator.dt.value = self.robot.timeStep
        # Concatenate with interace estimator
        plug(self.comVector.sout, self.interface.comVector)
        plug(self.robot.dynamicEncoders.inertia, self.interface.inertia)
        plug(self.robot.dynamicEncoders.angularmomentum,
             self.interface.angMomentum)
        plug(self.angMomDerivator.sout, self.interface.dangMomentum)
        self.interface.dinertia.value = (0, 0, 0, 0, 0, 0)
        plug(self.robot.dynamicEncoders.waist, self.interface.positionWaist)
        plug(self.IMUVector.sout, self.interface.imuVector)

        plug(self.interface.input, self.input)

        self.robot.flextimator = self
예제 #9
0
def create_base_encoders(robot):
    from dynamic_graph.sot.core import Selec_of_vector
    base_encoders = Selec_of_vector('base_encoders')
    plug(robot.device.robotState, base_encoders.sin)
    base_encoders.selec(0, NJ + 6)
    return base_encoders
예제 #10
0
# Create the sequence player
aPlayHppPath = PathSampler('aPlayHppPath')
aPlayHppPath.connect("ontake", 2809)
aPlayHppPath.setRootJointType("freeflyer")
aPlayHppPath.setPathID(1)
aPlayHppPath.setTimeStep(0.001)
for seg in hpp_to_keep:
    aPlayHppPath.addParamSelection(seg[0], seg[1])

# Connects the sequence player to the posture task
from dynamic_graph.sot.core import Selec_of_vector
from dynamic_graph import plug

# Connects the dynamics to the current feature of the posture task
getPostureValue = Selec_of_vector("current_posture")
getTargetValue = Selec_of_vector("current_target")
getPostureValue.selec(6, robotDim)
getTargetValue.selec(6, robotDim)
plug(robot.dynamic.position, getPostureValue.sin)
plug(aPlayHppPath.configuration, getTargetValue.sin)

plug(getTargetValue.sout, taskPosture.featureDes.errorIN)
plug(getPostureValue.sout, taskPosture.feature.errorIN)
plug(robot.dynamic.position, aPlayHppPath.position)

# Set the gain of the posture task
setGain(taskPosture.gain, (4.9, 0.9, 0.01, 0.9))
plug(taskPosture.gain.gain, taskPosture.controlGain)
plug(taskPosture.error, taskPosture.gain.error)