class AbstractHumanoidRobot (object): """ This class instantiates all the entities required to get a consistent representation of a humanoid robot, mainly: - device : to integrate velocities into angular control, - dynamic: to compute forward geometry and kinematics, - zmpFromForces: to compute ZMP force foot force sensors, - stabilizer: to stabilize balanced motions Operational points are stored into 'OperationalPoints' list. Some of them are also accessible directly as attributes: - leftWrist, - rightWrist, - leftAnkle, - rightAnkle, - Gaze. Tasks are stored into 'tasks' dictionary. For portability, some signals are accessible as attributes: - zmpRef: input (vector), - comRef: input (vector). - com: output (vector) - comSelec input (flag) - comdot: input (vector) reference velocity of the center of mass """ OperationalPoints = [] """ Operational points are specific interesting points of the robot used to control it. When an operational point is defined, signals corresponding to the point position and jacobian are created. For instance if creating an operational point for the left-wrist, the associated signals will be called "left-wrist" and "Jleft-wrist" for respectively the position and the jacobian. """ AdditionalFrames = [] """ Additional frames are frames which are defined w.r.t an operational point and provides an interesting transformation. It can be used, for instance, to store the sensor location. The contained elements must be triplets matching: - additional frame name, - transformation w.r.t to the operational point, - operational point file. """ name = None """Entity name (internal use)""" halfSitting = None """ The half-sitting position is the robot initial pose. This attribute *must* be defined in subclasses. """ dynamic = None """ The robot dynamic model. """ device = None """ The device that integrates the dynamic equation, namely - the real robot or - a simulator """ dimension = None """The configuration size.""" featureCom = None """ This generic feature takes as input the robot center of mass and as desired value the featureComDes feature of this class. """ featureComDes = None """ The feature associated to the robot center of mass desired position. """ comTask = None features = dict() """ Features associated to each operational point. Keys are corresponding to operational points. """ tasks = dict() """ Features associated to each operational point. Keys are corresponding to operational points. """ frames = dict() """ Additional frames defined by using OpPointModifier. """ #FIXME: the following options are /not/ independent. # zmp requires acceleration which requires velocity. """ Enable velocity computation. """ enableVelocityDerivator = False """ Enable acceleration computation. """ enableAccelerationDerivator = False """ Enable ZMP computation """ enableZmpComputation = False """ Tracer used to log data. """ tracer = None """ How much data will be logged. """ tracerSize = 2**20 """ Automatically recomputed signals through the use of device.after. This list is maintained in order to clean the signal list device.after before exiting. """ autoRecomputedSignals = [] """ Which signals should be traced. """ tracedSignals = { 'dynamic': ["com", "zmp", "angularmomentum", "position", "velocity", "acceleration"], 'device': ['zmp', 'control', 'state'] } """ Robot timestep """ timeStep = 0.005 def help (self): print (AbstractHumanoidRobot.__doc__) def loadModelFromKxml(self, name, filename): """ Load a model from a kxml file and return the parsed model. This uses the Python parser class implement in dynamic_graph.sot.dynamics.parser. kxml is an extensible file format used by KineoWorks to store both the robot mesh and its kinematic chain. The parser also imports inertia matrices which is a non-standard property. """ model = Parser(name, filename).parse() self.setProperties(model) return model def loadModelFromJrlDynamics(self, name, modelDir, modelName, specificitiesPath, jointRankPath, dynamicType): """ Load a model using the jrl-dynamics parser. This parser looks for VRML files in which kinematics and dynamics information have been added by extending the VRML format. It is mainly used by OpenHRP. Additional information are located in two different XML files. """ model = dynamicType(name) self.setProperties(model) model.setFiles(modelDir, modelName, specificitiesPath, jointRankPath) model.parse() return model def setProperties(self, model): model.setProperty('TimeStep', str(self.timeStep)) model.setProperty('ComputeAcceleration', 'false') model.setProperty('ComputeAccelerationCoM', 'false') model.setProperty('ComputeBackwardDynamics', 'false') model.setProperty('ComputeCoM', 'false') model.setProperty('ComputeMomentum', 'false') model.setProperty('ComputeSkewCom', 'false') model.setProperty('ComputeVelocity', 'false') model.setProperty('ComputeZMP', 'false') model.setProperty('ComputeAccelerationCoM', 'true') model.setProperty('ComputeCoM', 'true') model.setProperty('ComputeVelocity', 'true') model.setProperty('ComputeZMP', 'true') if self.enableZmpComputation: model.setProperty('ComputeBackwardDynamics', 'true') model.setProperty('ComputeAcceleration', 'true') model.setProperty('ComputeMomentum', 'true') def initializeOpPoints(self, model): for op in self.OperationalPoints: model.createOpPoint(op, op) def createCenterOfMassFeatureAndTask(self, featureName, featureDesName, taskName, selec = '011', gain = 1.): self.dynamic.com.recompute(0) self.dynamic.Jcom.recompute(0) featureCom = FeatureGeneric(featureName) plug(self.dynamic.com, featureCom.errorIN) plug(self.dynamic.Jcom, featureCom.jacobianIN) featureCom.selec.value = selec featureComDes = FeatureGeneric(featureDesName) featureComDes.errorIN.value = self.dynamic.com.value featureCom.setReference(featureComDes.name) comTask = Task(taskName) comTask.add(featureName) comTask.controlGain.value = gain return (featureCom, featureComDes, comTask) def createOperationalPointFeatureAndTask(self, operationalPointName, featureName, taskName, gain = .2): jacobianName = 'J{0}'.format(operationalPointName) self.dynamic.signal(operationalPointName).recompute(0) self.dynamic.signal(jacobianName).recompute(0) feature = \ FeaturePosition(featureName, self.dynamic.signal(operationalPointName), self.dynamic.signal(jacobianName), self.dynamic.signal(operationalPointName).value) task = Task(taskName) task.add(featureName) task.controlGain.value = gain return (feature, task) def createBalanceTask (self, taskName, gain = 1.): task = Task (taskName) task.add (self.featureCom.name) task.add (self.leftAnkle.name) task.add (self.rightAnkle.name) task.controlGain.value = gain return task def createFrame(self, frameName, transformation, operationalPoint): frame = OpPointModifier(frameName) frame.setTransformation(transformation) plug(self.dynamic.signal(operationalPoint), frame.positionIN) plug(self.dynamic.signal("J{0}".format(operationalPoint)), frame.jacobianIN) frame.position.recompute(frame.position.time + 1) frame.jacobian.recompute(frame.jacobian.time + 1) return frame def initializeSignals (self): """ For portability, make some signals accessible as attributes. """ self.comRef = self.featureComDes.errorIN self.zmpRef = self.device.zmp self.com = self.dynamic.com self.comSelec = self.featureCom.selec self.comdot = self.featureComDes.errordotIN def initializeRobot(self): """ If the robot model is correctly loaded, this method will then initialize the operational points, set the position to half-sitting with null velocity/acceleration. To finish, different tasks are initialized: - the center of mass task used to keep the robot stability - one task per operational point to ease robot control """ if not self.dynamic: raise RunTimeError("robots models have to be initialized first") if not self.device: self.device = RobotSimu(self.name + '_device') # Freeflyer reference frame should be the same as global # frame so that operational point positions correspond to # position in freeflyer frame. self.device.set(self.halfSitting) self.dynamic.position.value = self.halfSitting if self.enableVelocityDerivator: self.velocityDerivator = Derivator_of_Vector('velocityDerivator') self.velocityDerivator.dt.value = self.timeStep plug(self.device.state, self.velocityDerivator.sin) plug(self.velocityDerivator.sout, self.dynamic.velocity) else: self.dynamic.velocity.value = self.dimension*(0.,) if self.enableAccelerationDerivator: self.accelerationDerivator = \ Derivator_of_Vector('accelerationDerivator') self.accelerationDerivator.dt.value = self.timeStep plug(self.velocityDerivator.sout, self.accelerationDerivator.sin) plug(self.accelerationDerivator.sout, self.dynamic.acceleration) else: self.dynamic.acceleration.value = self.dimension*(0.,) """ self.initializeOpPoints(self.dynamic) # --- center of mass ------------ (self.featureCom, self.featureComDes, self.comTask) = \ self.createCenterOfMassFeatureAndTask( '{0}_feature_com'.format(self.name), '{0}_feature_ref_com'.format(self.name), '{0}_task_com'.format(self.name)) # --- operational points tasks ----- self.features = dict() self.tasks = dict() for op in self.OperationalPoints: (self.features[op], self.tasks[op]) = \ self.createOperationalPointFeatureAndTask( op, '{0}_feature_{1}'.format(self.name, op), '{0}_task_{1}'.format(self.name, op)) # define a member for each operational point w = op.split('-') memberName = w[0] for i in w[1:]: memberName += i.capitalize() setattr(self, memberName, self.features[op]) self.tasks ['com'] = self.comTask # --- balance task --- # self.tasks ['balance'] =\ self.createBalanceTask ('{0}_task_balance'.format (self.name)) # --- additional frames --- self.frames = dict() frameName = 'rightHand' hp = self.dynamic.getHandParameter (True) transformation = list (map (list, I4)) for i in range (3): transformation [i][3] = hp [i][3] transformation = tuple (map (tuple, transformation)) self.frames [frameName] = self.createFrame ( "{0}_{1}".format (self.name, frameName), transformation, "right-wrist") frameName = 'leftHand' hp = self.dynamic.getHandParameter (False) transformation = list (map (list, I4)) for i in range (3): transformation [i][3] = hp [i][3] transformation = tuple (map (tuple, transformation)) self.frames [frameName] = self.createFrame ( "{0}_{1}".format (self.name, frameName), self.dynamic.getHandParameter (False), "left-wrist") for (frameName, transformation, signalName) in self.AdditionalFrames: self.frames[frameName] = self.createFrame( "{0}_{1}".format(self.name, frameName), transformation, signalName) self.initializeSignals () """ def addTrace(self, entityName, signalName): if self.tracer: self.autoRecomputedSignals.append( '{0}.{1}'.format(entityName, signalName)) addTrace(self, self.tracer, entityName, signalName) def initializeTracer(self): if not self.tracer: self.tracer = TracerRealTime('trace') self.tracer.setBufferSize(self.tracerSize) self.tracer.open('/tmp/','dg_','.dat') # Recompute trace.triger at each iteration to enable tracing. self.device.after.addSignal('{0}.triger'.format(self.tracer.name)) def traceDefaultSignals (self): # Geometry / operational points for s in self.OperationalPoints + self.tracedSignals['dynamic']: self.addTrace(self.dynamic.name, s) # Geometry / frames for (frameName, _, _) in self.AdditionalFrames: for s in ['position', 'jacobian']: self.addTrace(self.frames[frameName].name, s) # Robot features for s in self.OperationalPoints: self.addTrace(self.features[s]._reference.name, 'position') self.addTrace(self.tasks[s].name, 'error') # Com self.addTrace(self.featureComDes.name, 'errorIN') self.addTrace(self.comTask.name, 'error') # Device for s in self.tracedSignals['device']: self.addTrace(self.device.name, s) if type(self.device) != RobotSimu: self.addTrace(self.device.name, 'robotState') # Misc if self.enableVelocityDerivator: self.addTrace(self.velocityDerivator.name, 'sout') if self.enableAccelerationDerivator: self.addTrace(self.accelerationDerivator.name, 'sout') def __init__(self, name, tracer = None): self.name = name # Initialize tracer if necessary. if tracer: self.tracer = tracer def __del__(self): if self.tracer: self.stopTracer() def startTracer(self): """ Start the tracer if it does not already been stopped. """ if self.tracer: self.tracer.start() def stopTracer(self): """ Stop and destroy tracer. """ if self.tracer: self.tracer.dump() self.tracer.stop() self.tracer.close() self.tracer.clear() for s in self.autoRecomputedSignals: self.device.after.rmSignal(s) self.tracer = None def reset(self, posture = None): """ Restart the control from another position. This method has not been extensively tested and should be used carefully. In particular, tasks should be removed from the solver before attempting a reset. """ if not posture: posture = self.halfSitting self.device.set(posture) #self.dynamic.com.recompute(self.device.state.time+1) #self.dynamic.Jcom.recompute(self.device.state.time+1) #self.featureComDes.errorIN.value = self.dynamic.com.value for op in self.OperationalPoints: self.dynamic.signal(op).recompute(self.device.state.time+1) self.dynamic.signal('J'+op).recompute(self.device.state.time+1) self.features[op].reference.value = self.dynamic.signal(op).value
class AbstractHumanoidRobot (object): """ This class instantiates all the entities required to get a consistent representation of a humanoid robot, mainly: - device : to integrate velocities into angular control, - dynamic: to compute forward geometry and kinematics, - zmpFromForces: to compute ZMP force foot force sensors, - stabilizer: to stabilize balanced motions Operational points are stored into 'OperationalPoints' list. Some of them are also accessible directly as attributes: - leftWrist, - rightWrist, - leftAnkle, - rightAnkle, - Gaze. Operational points are mapped to the actual joints in the robot model via 'OperationalPointsMap' dictionary. This attribute *must* be defined in the subclasses Other attributes require to be defined: - halfSitting: half-sitting position is the robot initial pose. This attribute *must* be defined in subclasses. - dynamic: The robot dynamic model. - device: The device that integrates the dynamic equation, namely the real robot or a simulator - dimension: The configuration size. """ def _initialize (self): self.OperationalPoints = ['left-wrist', 'right-wrist', 'left-ankle', 'right-ankle', 'gaze'] """ Operational points are specific interesting points of the robot used to control it. When an operational point is defined, signals corresponding to the point position and jacobian are created. For instance if creating an operational point for the left-wrist, the associated signals will be called "left-wrist" and "Jleft-wrist" for respectively the position and the jacobian. """ self.AdditionalFrames = [] """ Additional frames are frames which are defined w.r.t an operational point and provides an interesting transformation. It can be used, for instance, to store the sensor location. The contained elements must be triplets matching: - additional frame name, - transformation w.r.t to the operational point, - operational point file. """ self.frames = dict() """ Additional frames defined by using OpPointModifier. """ #FIXME: the following options are /not/ independent. # zmp requires acceleration which requires velocity. """ Enable velocity computation. """ self.enableVelocityDerivator = False """ Enable acceleration computation. """ self.enableAccelerationDerivator = False """ Enable ZMP computation """ self.enableZmpComputation = False """ Tracer used to log data. """ self.tracer = None """ How much data will be logged. """ self.tracerSize = 2**20 """ Automatically recomputed signals through the use of device.after. This list is maintained in order to clean the signal list device.after before exiting. """ self.autoRecomputedSignals = [] """ Which signals should be traced. """ self.tracedSignals = { 'dynamic': ["com", "zmp", "angularmomentum", "position", "velocity", "acceleration"], 'device': ['zmp', 'control', 'state'] } def help (self): print (AbstractHumanoidRobot.__doc__) def loadModelFromKxml(self, name, filename): """ Load a model from a kxml file and return the parsed model. This uses the Python parser class implement in dynamic_graph.sot.dynamics_pinocchio.parser. kxml is an extensible file format used by KineoWorks to store both the robot mesh and its kinematic chain. The parser also imports inertia matrices which is a non-standard property. """ model = Parser(name, filename).parse() self.setProperties(model) return model def loadModelFromUrdf(self, name, urdfPath, dynamicType): """ Load a model using the pinocchio urdf parser. This parser looks for urdf files in which kinematics and dynamics information have been added. Additional information are located in two different XML files. """ model = dynamicType(name) #TODO: setproperty flags in sot-pinocchio #self.setProperties(model) model.setFile(urdfPath) model.parse() return model #TODO: put these flags in sot-pinocchio #def setProperties(self, model): # model.setProperty('TimeStep', str(self.timeStep)) # # model.setProperty('ComputeAcceleration', 'false') # model.setProperty('ComputeAccelerationCoM', 'false') # model.setProperty('ComputeBackwardDynamics', 'false') # model.setProperty('ComputeCoM', 'false') # model.setProperty('ComputeMomentum', 'false') # model.setProperty('ComputeSkewCom', 'false') # model.setProperty('ComputeVelocity', 'false') # model.setProperty('ComputeZMP', 'false') # model.setProperty('ComputeAccelerationCoM', 'true') # model.setProperty('ComputeCoM', 'true') # model.setProperty('ComputeVelocity', 'true') # model.setProperty('ComputeZMP', 'true') # # if self.enableZmpComputation: # model.setProperty('ComputeBackwardDynamics', 'true') # model.setProperty('ComputeAcceleration', 'true') # model.setProperty('ComputeMomentum', 'true') def initializeOpPoints(self): for op in self.OperationalPoints: self.dynamic.createOpPoint(op, self.OperationalPointsMap[op]) def createFrame(self, frameName, transformation, operationalPoint): frame = OpPointModifier(frameName) frame.setTransformation(transformation) plug(self.dynamic.signal(operationalPoint), frame.positionIN) plug(self.dynamic.signal("J{0}".format(operationalPoint)), frame.jacobianIN) frame.position.recompute(frame.position.time + 1) frame.jacobian.recompute(frame.jacobian.time + 1) return frame def initializeRobot(self): """ If the robot model is correctly loaded, this method will then initialize the operational points, set the position to half-sitting with null velocity/acceleration. To finish, different tasks are initialized: - the center of mass task used to keep the robot stability - one task per operational point to ease robot control """ if not self.dynamic: raise RunTimeError("robots models have to be initialized first") if not self.device: self.device = RobotSimu(self.name + '_device') """ Robot timestep """ self.timeStep = self.device.getTimeStep() # Freeflyer reference frame should be the same as global # frame so that operational point positions correspond to # position in freeflyer frame. self.device.set(self.halfSitting) plug(self.device.state, self.dynamic.position) if self.enableVelocityDerivator: self.velocityDerivator = Derivator_of_Vector('velocityDerivator') self.velocityDerivator.dt.value = self.timeStep plug(self.device.state, self.velocityDerivator.sin) plug(self.velocityDerivator.sout, self.dynamic.velocity) else: self.dynamic.velocity.value = self.dimension*(0.,) if self.enableAccelerationDerivator: self.accelerationDerivator = \ Derivator_of_Vector('accelerationDerivator') self.accelerationDerivator.dt.value = self.timeStep plug(self.velocityDerivator.sout, self.accelerationDerivator.sin) plug(self.accelerationDerivator.sout, self.dynamic.acceleration) else: self.dynamic.acceleration.value = self.dimension*(0.,) #self.initializeOpPoints() #TODO: hand parameters through srdf --- additional frames --- #self.frames = dict() #frameName = 'rightHand' #self.frames [frameName] = self.createFrame ( # "{0}_{1}".format (self.name, frameName), # self.dynamic.getHandParameter (True), "right-wrist") # rightGripper is an alias for the rightHand: #self.frames ['rightGripper'] = self.frames [frameName] #frameName = 'leftHand' #self.frames [frameName] = self.createFrame ( # "{0}_{1}".format (self.name, frameName), # self.dynamic.getHandParameter (False), "left-wrist") # leftGripper is an alias for the leftHand: #self.frames ["leftGripper"] = self.frames [frameName] #for (frameName, transformation, signalName) in self.AdditionalFrames: # self.frames[frameName] = self.createFrame( # "{0}_{1}".format(self.name, frameName), # transformation, # signalName) def addTrace(self, entityName, signalName): if self.tracer: self.autoRecomputedSignals.append( '{0}.{1}'.format(entityName, signalName)) addTrace(self, self.tracer, entityName, signalName) def initializeTracer(self): if not self.tracer: self.tracer = TracerRealTime('trace') self.tracer.setBufferSize(self.tracerSize) self.tracer.open('/tmp/','dg_','.dat') # Recompute trace.triger at each iteration to enable tracing. self.device.after.addSignal('{0}.triger'.format(self.tracer.name)) def traceDefaultSignals (self): # Geometry / operational points for s in self.OperationalPoints + self.tracedSignals['dynamic']: self.addTrace(self.dynamic.name, s) # Geometry / frames for (frameName, _, _) in self.AdditionalFrames: for s in ['position', 'jacobian']: self.addTrace(self.frames[frameName].name, s) # Device for s in self.tracedSignals['device']: self.addTrace(self.device.name, s) if type(self.device) != RobotSimu: self.addTrace(self.device.name, 'robotState') # Misc if self.enableVelocityDerivator: self.addTrace(self.velocityDerivator.name, 'sout') if self.enableAccelerationDerivator: self.addTrace(self.accelerationDerivator.name, 'sout') def __init__(self, name, tracer = None): self._initialize() self.name = name # Initialize tracer if necessary. if tracer: self.tracer = tracer def __del__(self): if self.tracer: self.stopTracer() def startTracer(self): """ Start the tracer if it does not already been stopped. """ if self.tracer: self.tracer.start() def stopTracer(self): """ Stop and destroy tracer. """ if self.tracer: self.tracer.dump() self.tracer.stop() self.tracer.close() self.tracer.clear() for s in self.autoRecomputedSignals: self.device.after.rmSignal(s) self.tracer = None def reset(self, posture = None): """ Restart the control from another position. This method has not been extensively tested and should be used carefully. In particular, tasks should be removed from the solver before attempting a reset. """ if not posture: posture = self.halfSitting self.device.set(posture) self.dynamic.com.recompute(self.device.state.time+1) self.dynamic.Jcom.recompute(self.device.state.time+1) for op in self.OperationalPoints: self.dynamic.signal(self.OperationalPointsMap[op]).recompute(self.device.state.time+1) self.dynamic.signal('J'+self.OperationalPointsMap[op]).recompute(self.device.state.time+1)
class LegsFollowerGraph(object): legsFollower = None postureTask = None postureFeature = None postureFeatureDes = None postureError = None legsTask = None legsFeature = None legsFeatureDes = None legsError = None waistTask = None waistFeature = None waistFeatureDes = None waistError = None trace = None def __init__(self, robot, solver, trace = None, postureTaskDofs = None): print("Constructor of LegsFollower Graph") self.robot = robot self.solver = solver self.legsFollower = LegsFollower('legs-follower') self.statelength = len(robot.device.state.value) # Initialize the posture task. print("Posture Task") self.postureTaskDofs = postureTaskDofs if not self.postureTaskDofs: self.postureTaskDofs = [] for i in xrange(len(robot.halfSitting) - 6): # Disable legs dofs. if i < 12: #FIXME: not generic enough self.postureTaskDofs.append((i + 6, False)) else: self.postureTaskDofs.append((i + 6, True)) # This part is taken from feet_follower_graph self.postureTask = Task(self.robot.name + '_posture') self.postureFeature = FeaturePosture(self.robot.name + '_postureFeature') plug(self.robot.device.state, self.postureFeature.state) posture = list(self.robot.halfSitting) self.postureFeature.setPosture(tuple(posture)) for (dof, isEnabled) in self.postureTaskDofs: self.postureFeature.selectDof(dof, isEnabled) self.postureTask.add(self.postureFeature.name) self.postureTask.controlGain.value = 2. # Initialize the waist follower task. print("Waist Task") self.robot.features['waist'].selec.value = '111111' plug(self.legsFollower.waist, self.robot.features['waist'].reference) self.robot.tasks['waist'].controlGain.value = 1. # Initialize the legs follower task. print("Legs Task") self.legsTask = Task(self.robot.name + '_legs') self.legsFeature = FeatureGeneric(self.robot.name + '_legsFeature') legsFeatureDesName = self.robot.name + '_legsFeatureDes' self.legsFeatureDes = FeatureGeneric(legsFeatureDesName) self.legsError = LegsError('LegsError') plug(self.robot.device.state, self.legsError.state) # self.legsFeatureDes.errorIN.value = self.legsFollower.ldof.value plug(self.legsFollower.ldof,self.legsFeatureDes.errorIN) self.legsFeature.jacobianIN.value = self.legsJacobian() self.legsFeature.setReference(legsFeatureDesName) plug(self.legsError.error, self.legsFeature.errorIN) self.legsTask.add(self.legsFeature.name) self.legsTask.controlGain.value = 5. #CoM task print("Com Task") print (0., 0., self.robot.dynamic.com.value[2]) self.robot.comTask.controlGain.value = 50. self.robot.featureComDes.errorIN.value = (0., 0., self.robot.dynamic.com.value[2]) self.robot.featureCom.selec.value = '111' plug(self.legsFollower.com, self.robot.featureComDes.errorIN) # Plug the legs follower zmp output signals. plug(self.legsFollower.zmp, self.robot.device.zmp) solver.sot.remove(self.robot.comTask.name) print("Push in solver.") solver.sot.push(self.legsTask.name) solver.sot.push(self.postureTask.name) solver.sot.push(self.robot.tasks['waist'].name) solver.sot.push(self.robot.comTask.name) solver.sot.remove(self.robot.tasks['left-ankle'].name) solver.sot.remove(self.robot.tasks['right-ankle'].name) print solver.sot.display() print("Tasks added in solver.\n") print("Command are : \n - f.plug()\n - f.plugViewer()\n - f.plugPlanner()\n" " - f.plugPlannerWithoutMocap()\n - f.start()\n - f.stop()\n - f.readMocap()\n") def legsJacobian(self): j = [] for i in xrange(12): j.append(oneVector(6+i,self.statelength)) return tuple(j) def waistJacobian(self): j = [] for i in xrange(6): j.append(oneVector(i,self.statelength)) return tuple(j) def postureJacobian(self): j = [] for i in xrange(self.statelength): if i >= 6 + 2 * 6: j.append(oneVector(i)) if i == 3 or i == 4: j.append(zeroVector()) return tuple(j) def computeDesiredValue(self): e = self.robot.halfSitting #e = halfSitting e_ = [e[3], e[4]] offset = 6 + 2 * 6 for i in xrange(len(e) - offset): e_.append(e[offset + i]) return tuple(e_) def canStart(self): securityThreshold = 1e-3 return (self.postureTask.error.value <= (securityThreshold,) * len(self.postureTask.error.value)) def setupTrace(self): self.trace = TracerRealTime('trace') self.trace.setBufferSize(2**20) self.trace.open('/tmp/','legs_follower_','.dat') self.trace.add('legs-follower.com', 'com') self.trace.add('legs-follower.zmp', 'zmp') self.trace.add('legs-follower.ldof', 'ldof') self.trace.add('legs-follower.waist', 'waist') self.trace.add(self.robot.device.name + '.state', 'state') self.trace.add(self.legsTask.name + '.error', 'errorLegs') self.trace.add(self.robot.comTask.name + '.error', 'errorCom') #self.trace.add('legs-follower.outputStart','start') #self.trace.add('legs-follower.outputYaw','yaw') self.trace.add('corba.planner_steps','steps') self.trace.add('corba.planner_outputGoal','goal') self.trace.add('corba.waist','waistMocap') self.trace.add('corba.left-foot','footMocap') self.trace.add('corba.table','tableMocap') self.trace.add('corba.bar','barMocap') self.trace.add('corba.chair','chairMocap') self.trace.add('corba.helmet','helmetMocap') self.trace.add('corba.planner_outputObs','obstacles') self.trace.add(self.robot.dynamic.name + '.left-ankle', self.robot.dynamic.name + '-left-ankle') self.trace.add(self.robot.dynamic.name + '.right-ankle', self.robot.dynamic.name + '-right-ankle') # Recompute trace.triger at each iteration to enable tracing. self.robot.device.after.addSignal('legs-follower.zmp') self.robot.device.after.addSignal('legs-follower.outputStart') self.robot.device.after.addSignal('legs-follower.outputYaw') self.robot.device.after.addSignal('corba.planner_steps') self.robot.device.after.addSignal('corba.planner_outputGoal') self.robot.device.after.addSignal('corba.waist') self.robot.device.after.addSignal('corba.left-foot') self.robot.device.after.addSignal('corba.table') self.robot.device.after.addSignal('corba.bar') self.robot.device.after.addSignal('corba.chair') self.robot.device.after.addSignal('corba.helmet') self.robot.device.after.addSignal('corba.planner_outputObs') self.robot.device.after.addSignal(self.robot.dynamic.name + '.left-ankle') self.robot.device.after.addSignal(self.robot.dynamic.name + '.right-ankle') self.robot.device.after.addSignal('trace.triger') return def plugPlanner(self): print("Plug planner.") plug(corba.planner_radQ, self.legsFollower.inputRef) plug(self.legsFollower.outputStart, corba.planner_inputStart) plug(corba.waistTimestamp, corba.planner_timestamp) plug(corba.table, corba.planner_table) plug(corba.chair, corba.planner_chair) plug(corba.bar, corba.planner_bar) plug(corba.waist, corba.planner_waist) plug(corba.helmet, corba.planner_inputGoal) plug(corba.torus1, corba.planner_torus1) plug(corba.torus2, corba.planner_torus2) plug(corba.signal('left-foot'), corba.planner_foot) plug(corba.signal('left-footTimestamp'), corba.planner_footTimestamp) return def plugPlannerWithoutMocap(self): print("Plug planner without mocap.") plug(corba.planner_radQ, self.legsFollower.inputRef) plug(self.legsFollower.outputStart, corba.planner_inputStart) return def plugViewer(self): print("Plug viewer.") plug(self.legsFollower.ldof, corba.viewer_Ldof) plug(self.legsFollower.outputStart, corba.viewer_Start) plug(self.legsFollower.com, corba.viewer_Com) plug(self.legsFollower.outputYaw, corba.viewer_Yaw) plug(corba.planner_steps, corba.viewer_Steps) plug(corba.planner_outputGoal, corba.viewer_Goal) plug(corba.table, corba.viewer_Table) plug(corba.chair, corba.viewer_Chair) plug(corba.bar, corba.viewer_Bar) plug(corba.torus1, corba.viewer_Torus1) plug(corba.torus2, corba.viewer_Torus2) plug(corba.waist, corba.viewer_Waist) plug(corba.planner_outputLabyrinth, corba.viewer_Labyrinth) plug(corba.planner_outputObs, corba.viewer_Obs) return def plug(self): self.plugPlanner() self.plugViewer() return def readMocap(self): print "Table : " print corba.table.value print "Waist : " if len(corba.waist.value)<3: corba.waist.value = (0,0,0) print corba.waist.value print "Helmet : " print corba.helmet.value return; def start(self): if not self.canStart(): print("Robot has not yet converged to the initial position," " please wait and try again.") return print("Start.") self.postureTask.controlGain.value = 180. #self.waistTask.controlGain.value = 90. self.legsTask.controlGain.value = 180. self.robot.comTask.controlGain.value = 180. self.robot.tasks['waist'].controlGain.value = 45. self.setupTrace() self.trace.start() self.legsFollower.start() return def stop(self): self.legsFollower.stop() self.trace.dump() return
class Robot(object): """ This class instantiates a robot """ init_pos = (0.0) init_vel = (0.0) init_acc = (0.0) """ Tracer used to log data. """ tracer = None """ How much data will be logged. """ tracerSize = 2**22 """ Automatically recomputed signals through the use of device.after. This list is maintained in order to clean the signal list device.after before exiting. """ autoRecomputedSignals = [] """ Robot timestep """ timeStep = 0.005 def __init__(self, name, device=None, tracer=None): self.name = name self.device = device # Initialize tracer if necessary. if tracer: self.tracer = tracer self.initialize_tracer() # We trace by default all signals of the device. self.device_signals_names = [] for signal in self.device.signals(): signal_name = signal.name.split('::')[-1] self.add_trace(self.device.name, signal_name) self.device_signals_names.append(signal_name) # Prepare potential ros import/export self.ros = Ros(self.device) # self.export_device_dg_to_ros() def __del__(self): if self.tracer: self.stop_tracer() def add_trace(self, entityName, signalName): if self.tracer: addTrace(self, self.tracer, entityName, signalName) def _tracer_log_dir(self): import os import os.path import time log_dir = os.path.join(os.path.expanduser("~"), "dynamic_graph_manager", time.strftime("%Y-%m-%d_%H-%M-%S")) if not os.path.exists(log_dir): os.makedirs(log_dir) return log_dir def initialize_tracer(self): """ Initialize the tracer and by default dump the files in ~/dynamic_graph/[date_time]/ """ if not self.tracer: self.tracer = TracerRealTime('trace') self.tracer.setBufferSize(self.tracerSize) # Recompute trace.triger at each iteration to enable tracing. self.device.after.addSignal('{0}.triger'.format(self.tracer.name)) def start_tracer(self): """ Start the tracer if it has not already been stopped. """ if self.tracer: self.tracer_log_dir = self._tracer_log_dir() self.tracer.open(self.tracer_log_dir, 'dg_', '.dat') self.tracer.start() def stop_tracer(self): """ Stop and destroy tracer. """ if self.tracer: self.tracer.dump() self.tracer.stop() self.tracer.close() print("Stored trace in:", self.tracer_log_dir) # NOTE: Not calling self.tracer.clear() here, as by default the # tracer should keep it's traced signals attached. # Null the tracer object, such that initialize_tracer() will reopen it. self.trace = None self.initialize_tracer() def add_to_ros(self, entityName, signalName, topic_name=None, topic_type=None): """ arg: topic_type is a string among: ['double', 'matrix', 'vector', 'vector3', 'vector3Stamped', 'matrixHomo', 'matrixHomoStamped', 'twist', 'twistStamped', 'joint_states']. Each different strings correspond to a ros message. For rviz support please use joint_states which correspond to the joint states including the potential free flyer joint. """ # Lookup the entity's signal by name signal = Entity.entities[entityName].signal(signalName) if topic_name is None: topic_name = "/dg__" + entityName + '__' + signalName new_signal_name = "dg__" + entityName + '__' + signalName if topic_type is None: topic_type = "vector" self.ros.rosPublish.add(topic_type, new_signal_name, topic_name) plug(signal, self.ros.rosPublish.signal(new_signal_name)) def add_robot_state_to_ros(self, entity_name, signal_name, base_link_name, joint_names, tf_prefix, joint_state_topic_name): # Lookup the entity's signal by name signal = Entity.entities[entity_name].signal(signal_name) new_signal_name = "dg__" + entity_name + '__' + signal_name joint_names_string = "" for s in joint_names: joint_names_string += s + " " self.ros.rosRobotStatePublisher.add( base_link_name, joint_names_string, tf_prefix, new_signal_name, joint_state_topic_name, ) plug(signal, self.ros.rosRobotStatePublisher.signal(new_signal_name)) def add_ros_and_trace(self, entityName, signalName, topic_name=None, topic_type=None): self.add_trace(entityName, signalName) self.add_to_ros(entityName, signalName, topic_name=topic_name, topic_type=topic_type) def export_device_dg_to_ros(self): """ Import in ROS the signal from the dynamic graph device. """ for sig_name in self.device_signals_names: self.add_to_ros(self.device.name, sig_name)
class AbstractRobot(ABC): """ This class instantiates all the entities required to get a consistent representation of a robot, mainly: - device : to integrate velocities into angular control, - dynamic: to compute forward geometry and kinematics, - zmpFromForces: to compute ZMP force foot force sensors, - stabilizer: to stabilize balanced motions Operational points are stored into 'OperationalPoints' list. Some of them are also accessible directly as attributes: - leftWrist, - rightWrist, - leftAnkle, - rightAnkle, - Gaze. Operational points are mapped to the actual joints in the robot model via 'OperationalPointsMap' dictionary. This attribute *must* be defined in the subclasses Other attributes require to be defined: - halfSitting: half-sitting position is the robot initial pose. This attribute *must* be defined in subclasses. - dynamic: The robot dynamic model. - device: The device that integrates the dynamic equation, namely the real robot or a simulator - dimension: The configuration size. """ def _initialize(self): self.OperationalPoints = [] """ Operational points are specific interesting points of the robot used to control it. When an operational point is defined, signals corresponding to the point position and jacobian are created. For instance if creating an operational point for the left-wrist, the associated signals will be called "left-wrist" and "Jleft-wrist" for respectively the position and the jacobian. """ self.AdditionalFrames = [] """ Additional frames are frames which are defined w.r.t an operational point and provides an interesting transformation. It can be used, for instance, to store the sensor location. The contained elements must be triplets matching: - additional frame name, - transformation w.r.t to the operational point, - operational point file. """ self.frames = dict() """ Additional frames defined by using OpPointModifier. """ # FIXME: the following options are /not/ independent. # zmp requires acceleration which requires velocity. """ Enable velocity computation. """ self.enableVelocityDerivator = False """ Enable acceleration computation. """ self.enableAccelerationDerivator = False """ Enable ZMP computation """ self.enableZmpComputation = False """ Tracer used to log data. """ self.tracer = None """ How much data will be logged. """ self.tracerSize = 2**20 """ Automatically recomputed signals through the use of device.after. This list is maintained in order to clean the signal list device.after before exiting. """ self.autoRecomputedSignals = [] """ Which signals should be traced. """ self.tracedSignals = { 'dynamic': [ "com", "zmp", "angularmomentum", "position", "velocity", "acceleration" ], 'device': ['zmp', 'control', 'state'] } def help(self): print(AbstractHumanoidRobot.__doc__) def _removeMimicJoints(self, urdfFile=None, urdfString=None): """ Parse the URDF, extract the mimic joints and call removeJoints. """ # get mimic joints import xml.etree.ElementTree as ET if urdfFile is not None: assert urdfString is None, "One and only one of input argument should be provided" root = ET.parse(urdfFile) else: assert urdfString is not None, "One and only one of input argument should be provided" root = ET.fromstring(urdfString) mimicJoints = list() for e in root.iter('joint'): if 'name' in e.attrib: name = e.attrib['name'] for c in e: if hasattr(c, 'tag') and c.tag == 'mimic': mimicJoints.append(name) self.removeJoints(mimicJoints) def removeJoints(self, joints): """ - param joints: a list of joint names to be removed from the self.pinocchioModel """ jointIds = list() for j in joints: if self.pinocchioModel.existJointName(j): jointIds.append(self.pinocchioModel.getJointId(j)) if len(jointIds) > 0: q = pinocchio.neutral(self.pinocchioModel) self.pinocchioModel = pinocchio.buildReducedModel( self.pinocchioModel, jointIds, q) self.pinocchioData = pinocchio.Data(self.pinocchioModel) def loadModelFromString(self, urdfString, rootJointType=pinocchio.JointModelFreeFlyer, removeMimicJoints=True): """ Load a URDF model contained in a string - param rootJointType: the root joint type. None for no root joint. - param removeMimicJoints: if True, all the mimic joints found in the model are removed. """ if rootJointType is None: self.pinocchioModel = pinocchio.buildModelFromXML(urdfString) else: self.pinocchioModel = pinocchio.buildModelFromXML( urdfString, rootJointType()) self.pinocchioData = pinocchio.Data(self.pinocchioModel) if removeMimicJoints: self._removeMimicJoints(urdfString=urdfString) def loadModelFromUrdf(self, urdfPath, urdfDir=None, rootJointType=pinocchio.JointModelFreeFlyer, removeMimicJoints=True): """ Load a model using the pinocchio urdf parser. This parser looks for urdf files in which kinematics and dynamics information have been added. - param urdfPath: a path to the URDF file. - param urdfDir: A list of directories. If None, will use ROS_PACKAGE_PATH. """ if urdfPath.startswith("package://"): from os import path n1 = 10 # len("package://") n2 = urdfPath.index(path.sep, n1) pkg = urdfPath[n1:n2] relpath = urdfPath[n2 + 1:] import rospkg rospack = rospkg.RosPack() abspkg = rospack.get_path(pkg) urdfFile = path.join(abspkg, relpath) else: urdfFile = urdfPath if urdfDir is None: import os urdfDir = os.environ["ROS_PACKAGE_PATH"].split(':') if rootJointType is None: self.pinocchioModel = pinocchio.buildModelFromUrdf(urdfFile) else: self.pinocchioModel = pinocchio.buildModelFromUrdf( urdfFile, rootJointType()) self.pinocchioData = pinocchio.Data(self.pinocchioModel) if removeMimicJoints: self._removeMimicJoints(urdfFile=urdfFile) def initializeOpPoints(self): for op in self.OperationalPoints: self.dynamic.createOpPoint(op, self.OperationalPointsMap[op]) def createFrame(self, frameName, transformation, operationalPoint): frame = OpPointModifier(frameName) frame.setTransformation(transformation) plug(self.dynamic.signal(operationalPoint), frame.positionIN) plug(self.dynamic.signal("J{0}".format(operationalPoint)), frame.jacobianIN) frame.position.recompute(frame.position.time + 1) frame.jacobian.recompute(frame.jacobian.time + 1) return frame def setJointValueInConfig(self, q, jointNames, jointValues): """ q: configuration to update jointNames: list of existing joint names in self.pinocchioModel jointValues: corresponding joint values. """ model = self.pinocchioModel for jn, jv in zip(jointNames, jointValues): assert model.existJointName(jn) joint = model.joints[model.getJointId(jn)] q[joint.idx_q] = jv @abstractmethod def defineHalfSitting(self, q): """ Define half sitting configuration using the pinocchio Model (i.e. with quaternions and not with euler angles). method setJointValueInConfig may be usefull to implement this function. """ pass def initializeRobot(self): """ If the robot model is correctly loaded, this method will then initialize the operational points, set the position to half-sitting with null velocity/acceleration. To finish, different tasks are initialized: - the center of mass task used to keep the robot stability - one task per operational point to ease robot control """ if not hasattr(self, 'dynamic'): raise RuntimeError("Dynamic robot model must be initialized first") if not hasattr(self, 'device') or self.device is None: # raise RuntimeError("A device is already defined.") self.device = RobotSimu(self.name + '_device') self.device.resize(self.dynamic.getDimension()) """ Robot timestep """ self.timeStep = self.device.getTimeStep() # Compute half sitting configuration import numpy """ Half sitting configuration. """ self.halfSitting = pinocchio.neutral(self.pinocchioModel) self.defineHalfSitting(self.halfSitting) self.halfSitting = numpy.array( self.halfSitting[:3].tolist() + [0., 0., 0.] # Replace quaternion by RPY. + self.halfSitting[7:].tolist()) assert self.halfSitting.shape[0] == self.dynamic.getDimension() # Set the device limits. def get(s): s.recompute(0) return s.value def opposite(v): return [-x for x in v] self.dynamic.add_signals() self.device.setPositionBounds(get(self.dynamic.lowerJl), get(self.dynamic.upperJl)) self.device.setVelocityBounds(-get(self.dynamic.upperVl), get(self.dynamic.upperVl)) self.device.setTorqueBounds(-get(self.dynamic.upperTl), get(self.dynamic.upperTl)) # Freeflyer reference frame should be the same as global # frame so that operational point positions correspond to # position in freeflyer frame. self.device.set(self.halfSitting) plug(self.device.state, self.dynamic.position) if self.enableVelocityDerivator: self.velocityDerivator = Derivator_of_Vector('velocityDerivator') self.velocityDerivator.dt.value = self.timeStep plug(self.device.state, self.velocityDerivator.sin) plug(self.velocityDerivator.sout, self.dynamic.velocity) else: self.dynamic.velocity.value = numpy.zeros([ self.dimension, ]) if self.enableAccelerationDerivator: self.accelerationDerivator = \ Derivator_of_Vector('accelerationDerivator') self.accelerationDerivator.dt.value = self.timeStep plug(self.velocityDerivator.sout, self.accelerationDerivator.sin) plug(self.accelerationDerivator.sout, self.dynamic.acceleration) else: self.dynamic.acceleration.value = numpy.zeros([ self.dimension, ]) def addTrace(self, entityName, signalName): if self.tracer: self.autoRecomputedSignals.append('{0}.{1}'.format( entityName, signalName)) addTrace(self, self.tracer, entityName, signalName) def initializeTracer(self): if not self.tracer: self.tracer = TracerRealTime('trace') self.tracer.setBufferSize(self.tracerSize) self.tracer.open('/tmp/', 'dg_', '.dat') # Recompute trace.triger at each iteration to enable tracing. self.device.after.addSignal('{0}.triger'.format(self.tracer.name)) def traceDefaultSignals(self): # Geometry / operational points for s in self.OperationalPoints + self.tracedSignals['dynamic']: self.addTrace(self.dynamic.name, s) # Geometry / frames for (frameName, _, _) in self.AdditionalFrames: for s in ['position', 'jacobian']: self.addTrace(self.frames[frameName].name, s) # Device for s in self.tracedSignals['device']: self.addTrace(self.device.name, s) if type(self.device) != RobotSimu: self.addTrace(self.device.name, 'robotState') # Misc if self.enableVelocityDerivator: self.addTrace(self.velocityDerivator.name, 'sout') if self.enableAccelerationDerivator: self.addTrace(self.accelerationDerivator.name, 'sout') def __init__(self, name, tracer=None): self._initialize() self.name = name # Initialize tracer if necessary. if tracer: self.tracer = tracer def __del__(self): if self.tracer: self.stopTracer() def startTracer(self): """ Start the tracer if it does not already been stopped. """ if self.tracer: self.tracer.start() def stopTracer(self): """ Stop and destroy tracer. """ if self.tracer: self.tracer.dump() self.tracer.stop() self.tracer.close() self.tracer.clear() for s in self.autoRecomputedSignals: self.device.after.rmSignal(s) self.tracer = None def reset(self, posture=None): """ Restart the control from another position. This method has not been extensively tested and should be used carefully. In particular, tasks should be removed from the solver before attempting a reset. """ if not posture: posture = self.halfSitting self.device.set(posture) self.dynamic.com.recompute(self.device.state.time + 1) self.dynamic.Jcom.recompute(self.device.state.time + 1) for op in self.OperationalPoints: self.dynamic.signal(self.OperationalPointsMap[op]).recompute( self.device.state.time + 1) self.dynamic.signal('J' + self.OperationalPointsMap[op]).recompute( self.device.state.time + 1)
task_wrist.controlGain.value = 1. task_wrist.add(feature_wrist.name) # Create operational point for the end effector model.createOpPoint("ee", "ee_fixed_joint") solver = SOT('solver') solver.setSize(dimension) solver.push(task_wrist.name) plug(solver.control, device.control) device.increment(0.01) #Create tracer tracer = TracerRealTime('trace') tracer.setBufferSize(2**20) tracer.open('/tmp/', 'dg_', '.dat') # Make sure signals are recomputed even if not used in the control graph device.after.addSignal('{0}.triger'.format(tracer.name)) addTrace(device, tracer, device.name, "state") addTrace(device, tracer, feature_wrist._feature.name, "position") addTrace(device, tracer, feature_wrist._reference.name, "position") #writeGraph('/tmp/graph') dt = .01 tracer.start() for i in range(1000): device.increment(dt) tracer.stop() tracer.dump()
task_wrist.add (feature_wrist.name) # Create operational point for the end effector model.createOpPoint ("ee", "ee_fixed_joint") solver = SOT ('solver') solver.setSize (dimension) solver.push (task_wrist.name) plug (solver.control, device.control) device.increment (0.01) #Create tracer tracer = TracerRealTime ('trace') tracer.setBufferSize(2**20) tracer.open('/tmp/','dg_','.dat') # Make sure signals are recomputed even if not used in the control graph device.after.addSignal('{0}.triger'.format(tracer.name)) addTrace (device, tracer, device.name, "state") addTrace (device, tracer, feature_wrist._feature.name, "position") addTrace (device, tracer, feature_wrist._reference.name, "position") #writeGraph('/tmp/graph') dt = .01 tracer.start () for i in range (1000): device.increment (dt) tracer.stop () tracer.dump ()