예제 #1
0
    def __init__(self):
        super(DenseFeatureExtractionModuleE2Inv, self).__init__()

        filters = np.array([32,32, 64,64, 128,128,128, 256,256,256, 512,512,512], dtype=np.int32)*2
        
        # number of rotations to consider for rotation invariance
        N = 8
        
        self.gspace = gspaces.Rot2dOnR2(N)
        self.input_type = enn.FieldType(self.gspace, [self.gspace.trivial_repr] * 3)
        ip_op_types = [
            self.input_type,
        ]
        
        self.num_channels = 64

        for filter_ in filters[:10]:
            ip_op_types.append(FIELD_TYPE['regular'](self.gspace, filter_, fixparams=False))

        self.model = enn.SequentialModule(*[
            conv3x3(ip_op_types[0], ip_op_types[1]),
            enn.ReLU(ip_op_types[1], inplace=True),
            conv3x3(ip_op_types[1], ip_op_types[2]),
            enn.ReLU(ip_op_types[2], inplace=True),
            enn.PointwiseMaxPool(ip_op_types[2], 2),

            conv3x3(ip_op_types[2], ip_op_types[3]),
            enn.ReLU(ip_op_types[3], inplace=True),
            conv3x3(ip_op_types[3], ip_op_types[4]),
            enn.ReLU(ip_op_types[4], inplace=True),
            enn.PointwiseMaxPool(ip_op_types[4], 2),

            conv3x3(ip_op_types[4], ip_op_types[5]),
            enn.ReLU(ip_op_types[5], inplace=True),
            conv3x3(ip_op_types[5], ip_op_types[6]),
            enn.ReLU(ip_op_types[6], inplace=True),
            conv3x3(ip_op_types[6], ip_op_types[7]),
            enn.ReLU(ip_op_types[7], inplace=True),
            enn.PointwiseAvgPool(ip_op_types[7], kernel_size=2, stride=1),

            conv5x5(ip_op_types[7], ip_op_types[8]),
            enn.ReLU(ip_op_types[8], inplace=True),
            conv5x5(ip_op_types[8], ip_op_types[9]),
            enn.ReLU(ip_op_types[9], inplace=True),
            conv5x5(ip_op_types[9], ip_op_types[10]),
            enn.ReLU(ip_op_types[10], inplace=True),
            
            # enn.PointwiseMaxPool(ip_op_types[7], 2),

            # conv3x3(ip_op_types[7], ip_op_types[8]),
            # enn.ReLU(ip_op_types[8], inplace=True),
            # conv3x3(ip_op_types[8], ip_op_types[9]),
            # enn.ReLU(ip_op_types[9], inplace=True),
            # conv3x3(ip_op_types[9], ip_op_types[10]),
            # enn.ReLU(ip_op_types[10], inplace=True),
            enn.GroupPooling(ip_op_types[10])
        ])
예제 #2
0
 def __init__(self, growth_rate, list_layer, nclasses):
     super(DenseNet161, self).__init__()
     
     self.gspace = gspaces.Rot2dOnR2(N=8)
     
     in_type = 2*growth_rate
     
     self.conv1 = conv7x7(FIELD_TYPE["trivial"](self.gspace, 3, fixparams=False), 
                          FIELD_TYPE["regular"](self.gspace, in_type, fixparams=False))
     
     self.pool1 = enn.PointwiseMaxPool(FIELD_TYPE["regular"](self.gspace, in_type, fixparams=False),
                                       kernel_size=2, stride=2)
     
     
     #1st block
     self.block1 = DenseBlock(in_type, growth_rate, self.gspace, list_layer[0])
     in_type = in_type +list_layer[0]*growth_rate
     self.trans1 = TransitionBlock(in_type, int(in_type/2), self.gspace)
     in_type = int(in_type/2)
     
     #2nd block
     self.block2 = DenseBlock(in_type, growth_rate, self.gspace, list_layer[1])
     in_type = in_type +list_layer[1]*growth_rate
     self.trans2 = TransitionBlock(in_type, int(in_type/2), self.gspace)
     in_type = int(in_type/2)
     
     #3rd block
     self.block3 = DenseBlock(in_type, growth_rate, self.gspace, list_layer[2])
     in_type = in_type +list_layer[2]*growth_rate
     self.trans3 = TransitionBlock(in_type, int(in_type/2), self.gspace)
     in_type = int(in_type/2)
     
     #4th block
     self.block4 = DenseBlock(in_type, growth_rate, self.gspace, list_layer[3])
     in_type = in_type +list_layer[3]*growth_rate
     
     
     self.bn = enn.InnerBatchNorm(FIELD_TYPE["regular"](self.gspace, in_type, fixparams=False))
     self.relu = enn.ReLU(FIELD_TYPE["regular"](self.gspace, in_type, fixparams=False),inplace=True)
     self.pool2 = torch.nn.AdaptiveAvgPool2d((1, 1))
     self.classifier = torch.nn.Linear(in_type, nclasses)
예제 #3
0
    def __init__(self,
                 base = 'DNSteerableAGRadGalNet',
                 attention_module='SelfAttention',
                 attention_gates=3,
                 attention_aggregation='ft',
                 n_classes=2,
                 attention_normalisation='sigmoid',
                 quiet=True,
                 number_rotations=8,
                 imsize=150,
                 kernel_size=3,
                 group="D"
                ):
        super(DNSteerableAGRadGalNet, self).__init__()
        aggregation_mode = attention_aggregation
        normalisation = attention_normalisation
        AG = int(attention_gates)
        N = int(number_rotations)
        kernel_size = int(kernel_size)
        imsize = int(imsize)
        n_classes = int(n_classes)
        assert aggregation_mode in ['concat', 'mean', 'deep_sup', 'ft'], 'Aggregation mode not recognised. Valid inputs include concat, mean, deep_sup or ft.'
        assert normalisation in ['sigmoid','range_norm','std_mean_norm','tanh','softmax'], f'Nomralisation not implemented. Can be any of: sigmoid, range_norm, std_mean_norm, tanh, softmax'
        assert AG in [0,1,2,3], f'Number of Attention Gates applied (AG) must be an integer in range [0,3]. Currently AG={AG}'
        assert group.lower() in ["d","c"], f"group parameter must either be 'D' for DN, or 'C' for CN, steerable networks. (currently {group})."
        filters = [6,16,32,64,128]

        self.attention_out_sizes = []
        self.ag = AG
        self.n_classes = n_classes
        self.filters = filters
        self.aggregation_mode = aggregation_mode

        # Setting up e2
        if group.lower() == "d":
            self.r2_act = gspaces.FlipRot2dOnR2(N=int(number_rotations))
        else:
            self.r2_act = gspaces.Rot2dOnR2(N=int(number_rotations))
        in_type = e2nn.FieldType(self.r2_act, [self.r2_act.trivial_repr])
        out_type = e2nn.FieldType(self.r2_act, 6*[self.r2_act.regular_repr])
        self.in_type = in_type

        self.mask = e2nn.MaskModule(in_type, imsize, margin=0)
        self.conv1a = e2nn.R2Conv(in_type,  out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu1a = e2nn.ReLU(out_type); self.bnorm1a= e2nn.InnerBatchNorm(out_type)
        self.conv1b = e2nn.R2Conv(out_type, out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu1b = e2nn.ReLU(out_type); self.bnorm1b= e2nn.InnerBatchNorm(out_type)
        self.conv1c = e2nn.R2Conv(out_type, out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu1c = e2nn.ReLU(out_type); self.bnorm1c= e2nn.InnerBatchNorm(out_type)
        self.mpool1 = e2nn.PointwiseMaxPool(out_type, kernel_size=(2,2), stride=2)
        self.gpool1 = e2nn.GroupPooling(out_type)


        in_type = out_type
        out_type = e2nn.FieldType(self.r2_act, 16*[self.r2_act.regular_repr])
        self.conv2a = e2nn.R2Conv(in_type,  out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu2a = e2nn.ReLU(out_type); self.bnorm2a= e2nn.InnerBatchNorm(out_type)
        self.conv2b = e2nn.R2Conv(out_type, out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu2b = e2nn.ReLU(out_type); self.bnorm2b= e2nn.InnerBatchNorm(out_type)
        self.conv2c = e2nn.R2Conv(out_type, out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu2c = e2nn.ReLU(out_type); self.bnorm2c= e2nn.InnerBatchNorm(out_type)
        self.mpool2 = e2nn.PointwiseMaxPool(out_type, kernel_size=(2,2), stride=2)
        self.gpool2 = e2nn.GroupPooling(out_type)

        in_type = out_type
        out_type = e2nn.FieldType(self.r2_act, 32*[self.r2_act.regular_repr])
        self.conv3a = e2nn.R2Conv(in_type,  out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu3a = e2nn.ReLU(out_type); self.bnorm3a= e2nn.InnerBatchNorm(out_type)
        self.conv3b = e2nn.R2Conv(out_type, out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu3b = e2nn.ReLU(out_type); self.bnorm3b= e2nn.InnerBatchNorm(out_type)
        self.conv3c = e2nn.R2Conv(out_type, out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu3c = e2nn.ReLU(out_type); self.bnorm3c= e2nn.InnerBatchNorm(out_type)
        self.mpool3 = e2nn.PointwiseMaxPool(out_type, kernel_size=(2,2), stride=2)
        self.gpool3 = e2nn.GroupPooling(out_type)

        in_type = out_type
        out_type = e2nn.FieldType(self.r2_act, 64*[self.r2_act.regular_repr])
        self.conv4a = e2nn.R2Conv(in_type,  out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu4a = e2nn.ReLU(out_type); self.bnorm4a= e2nn.InnerBatchNorm(out_type)
        self.conv4b = e2nn.R2Conv(out_type, out_type, kernel_size=kernel_size, padding=kernel_size//2, stride=1, bias=False); self.relu4b = e2nn.ReLU(out_type); self.bnorm4b= e2nn.InnerBatchNorm(out_type)
        self.mpool4 = e2nn.PointwiseMaxPool(out_type, kernel_size=(2,2), stride=2)
        self.gpool4 = e2nn.GroupPooling(out_type)

        self.flatten = nn.Flatten(1)
        self.dropout = nn.Dropout(p=0.5)

        if self.ag == 0:
            pass
        if self.ag >= 1:
            self.attention1 = GridAttentionBlock2D(in_channels=32, gating_channels=64, inter_channels=64, input_size=[imsize//4,imsize//4], normalisation=normalisation)
        if self.ag >= 2:
            self.attention2 = GridAttentionBlock2D(in_channels=16, gating_channels=64, inter_channels=64, input_size=[imsize//2,imsize//2], normalisation=normalisation)
        if self.ag >= 3:
            self.attention3 = GridAttentionBlock2D(in_channels=6, gating_channels=64, inter_channels=64, input_size=[imsize,imsize], normalisation=normalisation)

        self.fc1 = nn.Linear(16*5*5,256) #channel_size * width * height
        self.fc2 = nn.Linear(256,256)
        self.fc3 = nn.Linear(256, self.n_classes)
        self.dummy = nn.Parameter(torch.empty(0))

        self.module_order = ['conv1a', 'relu1a', 'bnorm1a', #1->6
                             'conv1b', 'relu1b', 'bnorm1b', #6->6
                             'conv1c', 'relu1c', 'bnorm1c', #6->6
                             'mpool1',
                             'conv2a', 'relu2a', 'bnorm2a', #6->16
                             'conv2b', 'relu2b', 'bnorm2b', #16->16
                             'conv2c', 'relu2c', 'bnorm2c', #16->16
                             'mpool2',
                             'conv3a', 'relu3a', 'bnorm3a', #16->32
                             'conv3b', 'relu3b', 'bnorm3b', #32->32
                             'conv3c', 'relu3c', 'bnorm3c', #32->32
                             'mpool3',
                             'conv4a', 'relu4a', 'bnorm4a', #32->64
                             'conv4b', 'relu4b', 'bnorm4b', #64->64
                             'compatibility_score1',
                             'compatibility_score2']


        #########################
        # Aggreagation Strategies
        if self.ag != 0:
            self.attention_filter_sizes = [32, 16, 6]
            concat_length = 0
            for i in range(self.ag):
                concat_length += self.attention_filter_sizes[i]
            if aggregation_mode == 'concat':
                self.classifier = nn.Linear(concat_length, self.n_classes)
                self.aggregate = self.aggregation_concat
            else:
                # Not able to initialise in a loop as the modules will not change device with remaining model.
                self.classifiers = nn.ModuleList()
                if self.ag>=1:
                    self.classifiers.append(nn.Linear(self.attention_filter_sizes[0], self.n_classes))
                if self.ag>=2:
                    self.classifiers.append(nn.Linear(self.attention_filter_sizes[1], self.n_classes))
                if self.ag>=3:
                    self.classifiers.append(nn.Linear(self.attention_filter_sizes[2], self.n_classes))
                if aggregation_mode == 'mean':
                    self.aggregate = self.aggregation_sep
                elif aggregation_mode == 'deep_sup':
                    self.classifier = nn.Linear(concat_length, self.n_classes)
                    self.aggregate = self.aggregation_ds
                elif aggregation_mode == 'ft':
                    self.classifier = nn.Linear(self.n_classes*self.ag, self.n_classes)
                    self.aggregate = self.aggregation_ft
                else:
                    raise NotImplementedError
        else:
            self.classifier = nn.Linear((150//16)**2*64, self.n_classes)
            self.aggregate = lambda x: self.classifier(self.flatten(x))
예제 #4
0
    def __init__(self, conv_func, group, in_channels):
        super(Backbone5x5, self).__init__()

        # the model is equivariant under rotations by 45 degrees, modelled by C8
        # self.r2_act = gspaces.Rot2dOnR2(N=8)
        self.r2_act = group

        # the input image is a scalar field, corresponding to the trivial representation
        in_type = nn.FieldType(self.r2_act,
                               in_channels * [self.r2_act.trivial_repr])

        # we store the input type for wrapping the images into a geometric tensor during the forward pass
        self.input_type = in_type

        if isinstance(in_type.gspace, e2cnn.gspaces.Rot2dOnR2):
            base = 8
        elif isinstance(in_type.gspace, e2cnn.gspaces.FlipRot2dOnR2):
            base = 4

        # convolution 1
        # first specify the output type of the convolutional layer
        # we choose 16 feature fields, each transforming under the regular representation of C8
        out_type = nn.FieldType(self.r2_act, 16 * [self.r2_act.regular_repr])
        self.add_module(
            'block1',
            nn.SequentialModule(
                # nn.MaskModule(in_type, 29, margin=1),
                conv_func(in_type,
                          out_type,
                          kernel_size=5,
                          padding=1,
                          bias=False),
                # nn.InnerBatchNorm(out_type),
                nn.ReLU(out_type, inplace=True)))

        # convolution 2
        # the old output type is the input type to the next layer
        in_type = out_type
        # the output type of the second convolution layer are 32 regular feature fields of C8
        out_type = nn.FieldType(self.r2_act,
                                3 * base * [self.r2_act.regular_repr])
        self.add_module(
            'block2',
            nn.SequentialModule(
                conv_func(in_type,
                          out_type,
                          kernel_size=5,
                          padding=2,
                          bias=False),
                # nn.InnerBatchNorm(out_type),
                nn.ReLU(out_type, inplace=True)))
        self.add_module(
            'pool1',
            nn.SequentialModule(
                nn.PointwiseMaxPool(out_type, kernel_size=3, stride=2)))

        # convolution 3
        # the old output type is the input type to the next layer
        in_type = out_type
        # the output type of the third convolution layer are 32 regular feature fields of C8
        out_type = nn.FieldType(self.r2_act,
                                4 * base * [self.r2_act.regular_repr])
        self.add_module(
            'block3',
            nn.SequentialModule(
                conv_func(in_type,
                          out_type,
                          kernel_size=5,
                          padding=2,
                          bias=False),
                # nn.InnerBatchNorm(out_type),
                nn.ReLU(out_type, inplace=True)))

        # convolution 4
        # the old output type is the input type to the next layer
        in_type = out_type
        # the output type of the fourth convolution layer are 64 regular feature fields of C8
        out_type = nn.FieldType(self.r2_act,
                                6 * base * [self.r2_act.regular_repr])
        self.add_module(
            'block4',
            nn.SequentialModule(
                conv_func(in_type,
                          out_type,
                          kernel_size=5,
                          padding=2,
                          bias=False),
                # nn.InnerBatchNorm(out_type),
                nn.ReLU(out_type, inplace=True)))
        self.add_module(
            'pool2',
            nn.SequentialModule(
                nn.PointwiseMaxPool(out_type, kernel_size=3, stride=2)))

        # convolution 5
        # the old output type is the input type to the next layer
        in_type = out_type
        # the output type of the fifth convolution layer are 64 regular feature fields of C8
        out_type = nn.FieldType(self.r2_act,
                                8 * base * [self.r2_act.regular_repr])
        self.add_module(
            'block5',
            nn.SequentialModule(
                conv_func(in_type,
                          out_type,
                          kernel_size=5,
                          padding=2,
                          bias=False),
                # nn.InnerBatchNorm(out_type),
                nn.ReLU(out_type, inplace=True)))

        # convolution 6
        # the old output type is the input type to the next layer
        in_type = out_type
        # the output type of the sixth convolution layer are 64 regular feature fields of C8
        out_type = nn.FieldType(self.r2_act,
                                12 * base * [self.r2_act.regular_repr])
        self.add_module(
            'block6',
            nn.SequentialModule(
                conv_func(in_type,
                          out_type,
                          kernel_size=5,
                          padding=1,
                          bias=False),
                # nn.InnerBatchNorm(out_type),
                nn.ReLU(out_type, inplace=True)))
        self.add_module(
            'pool3',
            nn.PointwiseMaxPool(out_type, kernel_size=3, stride=1, padding=0))

        self.out_type = out_type
예제 #5
0
def ennMaxPool(inplanes, kernel_size, stride=1, padding=0):
    in_type = FIELD_TYPE['regular'](gspace, inplanes)
    return enn.PointwiseMaxPool(in_type,
                                kernel_size=kernel_size,
                                stride=stride,
                                padding=padding)