예제 #1
0
파일: depthwise.py 프로젝트: mitwood/e3nn
    def __init__(self,
                 Rs_in,
                 Rs_out,
                 Rs_mid1,
                 Rs_mid2,
                 groups,
                 convolution,
                 linear=Linear,
                 scalar_activation=swish,
                 gate_activation=sigmoid):
        super().__init__()

        act_in = GatedBlock(groups * Rs_mid1, scalar_activation,
                            gate_activation)
        self.lin_in = linear(Rs_in, act_in.Rs_in)
        self.act_in = act_in

        act_mid = GatedBlock(Rs_mid2, scalar_activation, gate_activation)
        self.conv = convolution(Rs_mid1, act_mid.Rs_in)
        self.act_mid = act_mid

        act_out = GatedBlock(Rs_out, scalar_activation, gate_activation)
        self.lin_out = linear(groups * Rs_mid2, act_out.Rs_in)
        self.act_out = act_out

        self.groups = groups
예제 #2
0
 def make_layer(Rs_in, Rs_out):
     if feature_product:
         tr1 = rs.TransposeToMulL(Rs_in)
         lts = LearnableTensorSquare(tr1.Rs_out,
                                     list(range(lmax + 1)),
                                     allow_change_output=True)
         tr2 = torch.nn.Flatten(2)
         Rs = tr1.mul * lts.Rs_out
         act = GatedBlock(Rs_out, swish, sigmoid)
         conv = convolution(K(Rs, act.Rs_in))
         return torch.nn.ModuleList(
             [torch.nn.Sequential(tr1, lts, tr2), conv, act])
     else:
         act = GatedBlock(Rs_out, swish, sigmoid)
         conv = convolution(K(Rs_in, act.Rs_in))
         return torch.nn.ModuleList([conv, act])
예제 #3
0
    def test1(self):
        with torch_default_dtype(torch.float64):
            Rs_in = [(3, 0), (3, 1), (2, 0), (1, 2)]
            Rs_out = [(3, 0), (3, 1), (1, 2), (3, 0)]

            f = GatedBlock(Rs_out, rescaled_act.Softplus(beta=5),
                           rescaled_act.sigmoid)
            c = Convolution(Kernel(Rs_in, f.Rs_in, ConstantRadialModel))

            abc = torch.randn(3)
            D_in = o3.direct_sum(
                *
                [o3.irr_repr(l, *abc) for mul, l in Rs_in for _ in range(mul)])
            D_out = o3.direct_sum(*[
                o3.irr_repr(l, *abc) for mul, l in Rs_out for _ in range(mul)
            ])

            x = torch.randn(1, 5, sum(mul * (2 * l + 1) for mul, l in Rs_in))
            geo = torch.randn(1, 5, 3)

            rx = torch.einsum("ij,zaj->zai", (D_in, x))
            rgeo = geo @ o3.rot(*abc).t()

            y = f(c(x, geo), dim=2)
            ry = torch.einsum("ij,zaj->zai", (D_out, y))

            self.assertLess((f(c(rx, rgeo)) - ry).norm(), 1e-10 * ry.norm())
예제 #4
0
파일: image.py 프로젝트: wudangt/e3nn
 def make_layer(Rs_in, Rs_out):
     act = GatedBlock(Rs_out, swish, sigmoid)
     conv = Convolution(Rs_in,
                        act.Rs_in,
                        size,
                        lmax=lmax,
                        fuzzy_pixels=True,
                        padding=size // 2)
     return torch.nn.Sequential(conv, act)
예제 #5
0
    def __init__(self,
                 Rs_in,
                 Rs_out,
                 Rs_mid1,
                 Rs_mid2,
                 groups,
                 convolution,
                 linear=Linear,
                 scalar_activation=swish,
                 gate_activation=sigmoid,
                 final_nonlinearity=True):
        """
        :param Rs_in:
        :param Rs_out:
        :param Rs_mid1:
        :param Rs_mid2:
        :param convolution: convolution operation that takes Rs_mid1, Rs_mid2
            e.g. convolution = lambda Rs_in, Rs_out: Convolution(Kernel(Rs_in, Rs_out, ConstantRadialModel))
        :param linear:
        :param scalar_activation:
        :param gated_activation:
        :param final_nonlinearity:
        """
        super().__init__()

        act_in = GatedBlock(groups * Rs_mid1, scalar_activation,
                            gate_activation)
        self.lin_in = linear(Rs_in, act_in.Rs_in)
        self.act_in = act_in

        act_mid = GatedBlock(Rs_mid2, scalar_activation, gate_activation)
        self.conv = convolution(Rs_mid1, act_mid.Rs_in)
        self.act_mid = act_mid

        if final_nonlinearity:
            act_out = GatedBlock(Rs_out, scalar_activation, gate_activation)
            self.lin_out = linear(groups * Rs_mid2, act_out.Rs_in)
            self.act_out = act_out
        else:
            self.lin_out = linear(groups * Rs_mid2, Rs_out)
            self.act_out = None

        self.groups = groups
예제 #6
0
파일: networks.py 프로젝트: zizai/e3nn
 def make_layer(Rs_in, Rs_out):
     if feature_product:
         tp = TensorSquare(Rs_in,
                           selection_rule=partial(o3.selection_rule,
                                                  lmax=lmax))
         lin = Linear(tp.Rs_out, Rs_in)
     act = GatedBlock(Rs_out, swish, sigmoid)
     conv = convolution(K, Rs_in, act.Rs_in)
     if feature_product:
         return torch.nn.ModuleList([tp, lin, conv, act])
     return torch.nn.ModuleList([conv, act])
예제 #7
0
파일: gru.py 프로젝트: Nanco-L/e3nn
    def __init__(self, repr, Operation):
        """
        :param repr: multiplicities
        :param Operation: class of signature (Rs_out)
        """
        super().__init__()

        self.repr = repr

        self.z_conv = Operation([(mul, l) for l, mul in enumerate(repr)], [(sum(repr), 0)])
        self.z_act = ScalarActivation([(sum(repr), torch.sigmoid)], bias=False)

        self.h_tilde = GatedBlock(Operation, repr, tanh, tanh)
예제 #8
0
파일: tetris.py 프로젝트: Nanco-L/e3nn
    def __init__(self, num_classes):
        super().__init__()

        representations = [(1, ), (2, 2, 2, 1), (4, 4, 4, 4), (6, 4, 4, 0),
                           (64, )]
        representations = [[(mul, l) for l, mul in enumerate(rs)]
                           for rs in representations]

        R = partial(CosineBasisModel,
                    max_radius=3.0,
                    number_of_basis=3,
                    h=100,
                    L=50,
                    act=relu)
        K = partial(Kernel, RadialModel=R)
        C = partial(Convolution, K)

        self.firstlayers = torch.nn.ModuleList([
            GatedBlock(partial(C, Rs_in), Rs_out, relu, sigmoid)
            for Rs_in, Rs_out in zip(representations, representations[1:])
        ])
        self.lastlayers = torch.nn.Sequential(AvgSpacial(),
                                              torch.nn.Linear(64, num_classes))
예제 #9
0
 def make_layer(Rs_in, Rs_out):
     act = GatedBlock(Rs_out, relu, sigmoid)
     conv = Convolution(K, Rs_in, act.Rs_in)
     return torch.nn.ModuleList([conv, act])
예제 #10
0
R = partial(CosineBasisModel,
            max_radius=3.0,
            number_of_basis=3,
            h=100,
            L=3,
            act=swish)
K = partial(Kernel, RadialModel=R)
C = partial(Convolution, K)

Rs_in1 = [(2, 0), (1, 1)]
Rs_in2 = [(1, 1)]

Rs_out1 = [(3, 0), (1, 1)]
Rs_out2 = [(3, 1)]

act1 = GatedBlock(Rs_out1, swish, sigmoid)  # (Rs1, Rs2) --> Rs1
mix1 = Mixer(C, [Rs_in1, Rs_in2], act1.Rs_in)
act2 = GatedBlock(Rs_out2, swish, sigmoid)  # (Rs1, Rs2) --> Rs2
mix2 = Mixer(C, [Rs_in1, Rs_in2], act2.Rs_in)

# First type of atom (eg. Hydrogen)
# There is 2 atoms with their features and positions
fea1 = torch.randn(10, 2, rs.dim(Rs_in1))
geo1 = torch.randn(10, 2, 3)

# Second type of atom (eg. Oxygen)
# There is 3 atoms with their features and positions
fea2 = torch.randn(10, 3, rs.dim(Rs_in2))
geo2 = torch.randn(10, 3, 3)

# The layer is splited in two parts for the two output types of atoms
예제 #11
0
 def make_layer(Rs_in, Rs_out):
     act = GatedBlock(Rs_out, relu, sigmoid)
     conv = PeriodicConvolution(K, Rs_in, act.Rs_in, max_radius=3.8)
     return torch.nn.ModuleList([conv, act])