# fill_param = 'beta' # fill_param = 'Lambda' use_periods = sorted(list(data.narrow_periods.keys())) # use_periods = data.sites[data.site_names[0]].periods x_scale, y_scale = 1, 120 save_fig = 1 freq_skip = 2 radius = 20 label_offset = -4.5 file_path = local_path + '/phd/ownCloud/Documents/ME_Transects/Dryden_paper/RoughFigures/' file_name = 'pt_pseudosection_phi2' file_types = ['.pdf', '.png'] #, '.ps', '.png') dpi = 600 linear_xaxis = True # cmap = cm.jet_plus_r(64) cmap = cm.jet(64) # cmap = cm.bwr(64) data.locations = data.get_locs(mode='latlong') main_transect.locations = main_transect.get_locs(mode='latlong') for ii, site in enumerate(data.site_names): easting, northing = utils.project( (data.locations[ii, 1], data.locations[ii, 0]), zone=16, letter='U')[2:] data.locations[ii, 1], data.locations[ii, 0] = easting, northing data.sites[site].locations['X'], data.sites[site].locations[ 'Y'] = northing, easting for ii, site in enumerate(main_transect.site_names): easting, northing = utils.project( (main_transect.locations[ii, 1], main_transect.locations[ii, 0]), zone=16,
import numpy as np import pyMT.data_structures as WSDS import matplotlib.pyplot as plt from matplotlib.figure import Figure from e_colours import colourmaps as cm import pyMT.utils as utils import pyMT.gplot as gplot from copy import deepcopy from scipy.spatial.distance import euclidean cmap = cm.jet() def normalize_ellipse(phi): phi_min = abs(phi.phi_min) phi_max = abs(phi.phi_max) phi_min, phi_max = utils.normalize([phi_min, phi_max]) return phi_min, phi_max def plot_ellipse(data, fill_param): ells = [] # data.locations = data.get_locs(mode='latlong') for site_name in data.site_names: site = data.sites[site_name] jx = np.cos(np.arange(0, 2 * np.pi, np.pi / 30)) jy = np.sin(np.arange(0, 2 * np.pi, np.pi / 30)) phi_x = site.phase_tensors[-6].phi[ 1, 1] * jx + site.phase_tensors[-6].phi[1, 0] * jy phi_y = site.phase_tensors[-6].phi[ 0, 1] * jx + site.phase_tensors[-6].phi[0, 0] * jy