예제 #1
0
    def __call__(self, inputs, labels, *, binary_search_steps=15):
        x = ep.astensor(inputs)
        y = ep.astensor(labels)
        assert x.shape[0] == y.shape[0]
        assert y.ndim == 1

        min_, max_ = self.model.bounds()
        target = (max_ + min_) / 2
        v = target - x

        N = len(x)
        x0 = x

        npdtype = x.numpy().dtype
        lower_bound = np.zeros((N,), dtype=npdtype)
        upper_bound = np.ones((N,), dtype=npdtype)

        epsilons = lower_bound

        for _ in range(binary_search_steps):
            x = x0 + atleast_kd(ep.from_numpy(x0, epsilons), x0.ndim) * v
            logits = ep.astensor(self.model.forward(x.tensor))
            classes = logits.argmax(axis=-1)
            is_adv = (classes != labels).numpy()
            lower_bound = np.where(is_adv, lower_bound, epsilons)
            upper_bound = np.where(is_adv, epsilons, upper_bound)
            epsilons = (lower_bound + upper_bound) / 2

        epsilons = upper_bound
        epsilons = ep.from_numpy(x0, epsilons)
        x = x0 + atleast_kd(epsilons, x0.ndim) * v
        return x.tensor
예제 #2
0
def main() -> None:

    model = models.resnet101(pretrained=True).eval()
    preprocessing = dict(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         axis=-3)
    fmodel = PyTorchModel(model, bounds=(0, 1), preprocessing=preprocessing)

    images, labels = fb.utils.samples(fmodel, dataset='imagenet', batchsize=16)
    clean_acc = fb.utils.accuracy(fmodel, images, labels)
    print(f"clean accuracy:  {clean_acc * 100:.1f} %")

    attack = fb.attacks.LinfDeepFoolAttack()
    epsilons = np.linspace(0.0, 0.005, num=20)

    images = ep.astensor(images)
    labels = ep.astensor(labels)
    criterion = fb.criteria.Misclassification(labels)

    raw, clipped, is_adv = attack(fmodel, images, labels, epsilons=epsilons)

    robust_accuracy = 1 - is_adv.float32().mean(axis=-1)
    print("robust accuracy for perturbations with")
    for eps, acc in zip(epsilons, robust_accuracy):
        print(f"  Linf norm ≤ {eps:<6}: {acc.item() * 100:4.1f} %")

    plt.plot(epsilons, robust_accuracy.numpy())
예제 #3
0
def pytorch_mnist(request: Any) -> ModelAndData:
    fmodel = fbn.zoo.ModelLoader.get().load("examples/zoo/mnist/",
                                            module_name="foolbox_model")
    x, y = fbn.samples(fmodel, dataset="mnist", batchsize=16)
    x = ep.astensor(x)
    y = ep.astensor(y)
    return fmodel, x, y
예제 #4
0
    def __call__(
        self,
        inputs,
        labels,
        *,
        rescale=False,
        epsilon=2.0,
        step_size=0.4,
        num_steps=10,
    ):
        def loss_fn(inputs: ep.Tensor, labels: ep.Tensor) -> ep.Tensor:
            logits = ep.astensor(self.model.forward(inputs.tensor))
            return ep.crossentropy(logits, labels).sum()

        if rescale:
            min_, max_ = self.model.bounds()
            scale = (max_ - min_) * np.sqrt(np.prod(inputs.shape[1:]))
            epsilon = epsilon * scale
            step_size = step_size * scale

        x = ep.astensor(inputs)
        y = ep.astensor(labels)
        assert x.shape[0] == y.shape[0]
        assert y.ndim == 1

        x0 = x

        for _ in range(num_steps):
            _, gradients = ep.value_and_grad(loss_fn, x, y)
            gradients = normalize_l2_norms(gradients)
            x = x + step_size * gradients
            x = x0 + clip_l2_norms(x - x0, epsilon)
            x = ep.clip(x, *self.model.bounds())

        return x.tensor
예제 #5
0
    def __call__(self, inputs, labels, *, steps=1000):
        x = ep.astensor(inputs)
        y = ep.astensor(labels)
        assert x.shape[0] == y.shape[0]
        assert y.ndim == 1

        assert x.ndim == 4
        if self.channel_axis == 1:
            h, w = x.shape[2:4]
        elif self.channel_axis == 3:
            h, w = x.shape[1:3]
        else:
            raise ValueError(
                "expected 'channel_axis' to be 1 or 3, got {channel_axis}")

        size = max(h, w)

        min_, max_ = self.model.bounds()

        x0 = x
        x0np = x0.numpy()

        epsilons = np.linspace(0, 1, num=steps + 1)[1:]

        logits = ep.astensor(self.model.forward(x0.tensor))
        classes = logits.argmax(axis=-1)
        is_adv = classes != labels
        found = is_adv

        result = x0

        for epsilon in epsilons:
            # TODO: reduce the batch size to the ones that haven't been sucessful

            sigmas = [epsilon * size] * 4
            sigmas[0] = 0
            sigmas[self.channel_axis] = 0

            # TODO: once we can implement gaussian_filter in eagerpy, avoid converting from numpy
            x = gaussian_filter(x0np, sigmas)
            x = np.clip(x, min_, max_)
            x = ep.from_numpy(x0, x)

            logits = ep.astensor(self.model.forward(x.tensor))
            classes = logits.argmax(axis=-1)
            is_adv = classes != labels

            new_adv = ep.logical_and(is_adv, found.logical_not())
            result = ep.where(atleast_kd(new_adv, x.ndim), x, result)
            found = ep.logical_or(new_adv, found)

            if found.all():
                break

        return result.tensor
예제 #6
0
def test_tensorflow_l2_carlini_wagner_attack(fmodel_and_data):
    fmodel, x, y, batch_size, num_classes = fmodel_and_data
    y = ep.astensor(fmodel.forward(x)).argmax(axis=-1)

    attack = L2CarliniWagnerAttack(fmodel)
    advs = attack(x, y, max_iterations=100)

    y_advs = ep.astensor(fmodel.forward(advs)).argmax(axis=-1)

    assert x.shape == advs.shape
    assert (y_advs == y).float32().mean() < 1
예제 #7
0
def test_tensorflow_linf_basic_iterative_attack(fmodel_and_data):
    fmodel, x, y, batch_size, num_classes = fmodel_and_data
    y = ep.astensor(fmodel.forward(x)).argmax(axis=-1)

    attack = LinfinityBasicIterativeAttack(fmodel)
    advs = attack(x, y, rescale=False, epsilon=0.3)

    perturbation = ep.astensor(advs - x)
    y_advs = ep.astensor(fmodel.forward(advs)).argmax(axis=-1)

    assert x.shape == advs.shape
    assert perturbation.abs().max() <= 0.3 + 1e-7
    assert (y_advs == y).float32().mean() < 1
예제 #8
0
def download_dataset(base_path, examples, data_format, bounds, dimension):
    images_path = base_path + os.sep + "subset"
    labels_path = base_path + os.sep + "labels.txt"
    images, labels = [], []
    files = os.listdir(images_path)
    files.sort()
    labels_numbers = []

    for idx in range(0, examples):
        # okresl nazwe pliku
        file = files[idx]
        labels_numbers.append(int(re.match(r".+val_0+(.+)\.", file).group(1)))

        # otworz plik
        path = os.path.join(images_path, file)
        image = Image.open(path)
        image = image.resize(dimension)
        image = np.asarray(image, dtype=np.float32)

        # jesli obraz jest zapisany w skali szarosci to dodawana jest trzecia os
        if image.ndim == 2:
            image = np.repeat(image[:, :, np.newaxis], 3, axis=2)

        # ewentualne przestawienie kanalow
        if data_format == "channels_first":
            image = np.transpose(image, (2, 0, 1))

        # dodanie obrazu do listy obrazow
        images.append(image)

    # pobranie etykiet
    with open(labels_path, "r") as csv_file:
        reader = csv.reader(csv_file)
        for i, line in enumerate(reader, 1):
            if len(labels) == len(files):
                break
            if i in labels_numbers:
                labels.append(int(line[0]))

    # konwersja list do tablic numpy
    images = np.stack(images)
    labels = np.array(labels)

    # wartosci pikseli zdjec domyslnie zawieraja sie w przedziale od 0 do 255
    # jesli ograniczenie wartosci pikseli dla modelu jest inny to nalezy skonwertowac zdjecia
    if bounds != (0, 255):
        images = images / 255 * (bounds[1] - bounds[0]) + bounds[0]

    images = ep.from_numpy(ep.torch.zeros(0, device="cpu"), images).raw
    labels = ep.from_numpy(ep.torch.zeros(0, device="cpu"), labels).raw
    return ep.astensor(images), ep.astensor(labels).astype(torch.long)
예제 #9
0
파일: conftest.py 프로젝트: zzsd/foolbox
def pytorch_resnet18(request: Any) -> ModelAndData:
    if request.config.option.skipslow:
        pytest.skip()

    import torchvision.models as models

    model = models.resnet18(pretrained=True).eval()
    preprocessing = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], axis=-3)
    fmodel = fbn.PyTorchModel(model, bounds=(0, 1), preprocessing=preprocessing)

    x, y = fbn.samples(fmodel, dataset="imagenet", batchsize=16)
    x = ep.astensor(x)
    y = ep.astensor(y)
    return fmodel, x, y
예제 #10
0
파일: conftest.py 프로젝트: zzsd/foolbox
def tensorflow_mobilenetv2(request: Any) -> ModelAndData:
    if request.config.option.skipslow:
        pytest.skip()

    import tensorflow as tf

    model = tf.keras.applications.MobileNetV2(weights="imagenet")
    fmodel = fbn.TensorFlowModel(
        model, bounds=(0, 255), preprocessing=dict(mean=127.5, std=127.5)
    )

    x, y = fbn.samples(fmodel, dataset="imagenet", batchsize=16)
    x = ep.astensor(x)
    y = ep.astensor(y)
    return fmodel, x, y
예제 #11
0
def test_gaussian_blur_attack():
    channels = 3
    batch_size = 8
    h = w = 32
    bounds = (0, 1)

    class Model(nn.Module):
        def forward(self, x):
            # instead of our usual model that's robust to the BlurAttack,
            # we use a slighlty different model that can be attacked
            x = x[:, :, 1:, :] - x[:, :, :-1, :]
            x = x[:, :, :, 1:] - x[:, :, :, :-1]
            x = torch.mean(x, 3)
            x = torch.mean(x, 2)
            return x

    model = Model().eval()
    fmodel = PyTorchModel(model, bounds=bounds)

    np.random.seed(0)
    x = np.random.uniform(*bounds, size=(batch_size, channels, h, w)).astype(np.float32)
    x = torch.from_numpy(x).to(fmodel.device)
    y = fmodel.forward(x).argmax(axis=-1)

    attack = GaussianBlurAttack(fmodel, channel_axis=1)
    advs = attack(x, y)

    perturbations = ep.astensor(advs - x)
    norms = flatten(perturbations).square().sum(axis=-1).sqrt()
    y_advs = fmodel.forward(advs).argmax(axis=-1)

    assert x.shape == advs.shape
    assert norms.max().item() <= 20.0 + 1e-7
    assert (y_advs == y).float().mean() < 1
예제 #12
0
 def loss_fun(x: ep.Tensor, k: int) -> ep.Tensor:
     logits = ep.astensor(self.model.forward(x.tensor))
     ik = classes[:, k]
     l0 = -ep.crossentropy(logits, i0)
     lk = -ep.crossentropy(logits, ik)
     loss = lk - l0
     return loss.sum(), (loss, logits)
예제 #13
0
 def loss_fun(x: ep.Tensor, k: int) -> ep.Tensor:
     logits = ep.astensor(self.model.forward(x.tensor))
     ik = classes[:, k]
     l0 = logits[rows, i0]
     lk = logits[rows, ik]
     loss = lk - l0
     return loss.sum(), (loss, logits)
예제 #14
0
def test_rescale_axis(request: Any, dummy: ep.Tensor) -> None:
    backend = request.config.option.backend
    if backend == "numpy":
        pytest.skip()

    x_np = np.random.uniform(0.0, 1.0, size=(16, 3, 64, 64))
    x_np_ep = ep.astensor(x_np)
    x_up_np_ep = rescale_images(x_np_ep, (16, 3, 128, 128), 1)
    x_up_np = x_up_np_ep.numpy()

    x = ep.from_numpy(dummy, x_np)
    x_ep = ep.astensor(x)
    x_up_ep = rescale_images(x_ep, (16, 3, 128, 128), 1)
    x_up = x_up_ep.numpy()

    assert np.allclose(x_up_np, x_up, atol=1e-5)
    def __call__(self, inputs, labels):
        inputs = ep.astensor(inputs)
        labels = ep.astensor(labels)
        x = ep.zeros_like(inputs)

        adv_samples = []

        for k in range(len(labels)):
            while True:
                idx = np.random.randint(len(self.labels))
                if int(labels[k].numpy()) != self.labels[idx]:
                    adv_samples.append(ep.astensor(self.samples[idx]).numpy())
                    break

        x = ep.from_numpy(x, np.stack(adv_samples))
        return x.tensor
예제 #16
0
def draw_line(x1, y1, x2, y2, radius, color, t, blend=0.75):
    '''
  Draws a line onto an image tensor. All units are in pixels
  Parameters:
    x1: x position for endpoint 1
    y1: y position for endpoint 1
    x2: x position for endpoint 2
    y2: y position for endpoint 2
    radius: line width (radius)
    color: rgb color tensor with shape (3,) and values in the range 0.0-1.0
    blend (optional): blending distance
  Returns:
    tensor with circle drawn onto it
  '''
    if type(t) == torch.Tensor:
        t = t.permute(1, 2, 0)
    t = ep.astensor(t)
    uvx, uvy = make_uv(t)
    pax, pay, bax, bay = uvx - x1, uvy - y1, x2 - x1, y2 - y1
    h = ep.clip((pax * bax + pay * bay) / (bax * bax + bay * bay), 0.0, 1.0)
    dlx, dly = pax - bax * h, pay - bay * h
    dist = (dlx * dlx + dly * dly).sqrt() - radius
    t = dist_to_col(dist, color, blend, t)
    t = t.raw
    if type(t) == torch.Tensor:
        t = t.permute(2, 0, 1)
    return t
예제 #17
0
def test_deepfool(Attack, loss):
    channels = 3
    batch_size = 8
    h = w = 32
    bounds = (0, 1)

    class Model(nn.Module):
        def forward(self, x):
            x = torch.mean(x, 3)
            x = torch.mean(x, 2)
            return x

    model = Model().eval()
    fmodel = PyTorchModel(model, bounds=bounds)

    np.random.seed(0)
    x = np.random.uniform(*bounds, size=(batch_size, channels, h, w)).astype(np.float32)
    x = torch.from_numpy(x).to(fmodel.device)
    y = fmodel.forward(x).argmax(axis=-1)

    attack = Attack(fmodel)
    advs = attack(x, y, loss=loss)

    perturbations = ep.astensor(advs - x)
    norms = flatten(perturbations).square().sum(axis=-1).sqrt()
    y_advs = fmodel.forward(advs).argmax(axis=-1)

    assert x.shape == advs.shape
    assert norms.max().item() <= 40.0 + 1e-7
    assert (y_advs == y).float().mean() < 1
예제 #18
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, T],
        *,
        early_stop: Optional[float] = None,
        starting_points: Optional[ep.Tensor] = None,
        **kwargs: Any,
    ) -> T:
        originals, restore_type = ep.astensor_(inputs)

        self._nqueries = {i: 0 for i in range(len(originals))}
        self._set_cos_sin_function(originals)
        self.theta_max = ep.ones(originals, len(originals)) * self._theta_max
        criterion = get_criterion(criterion)
        self._criterion_is_adversarial = get_is_adversarial(criterion, model)

        # Get Starting Point
        if starting_points is not None:
            best_advs = starting_points
        elif starting_points is None:
            init_attack: MinimizationAttack = LinearSearchBlendedUniformNoiseAttack(steps=50)
            best_advs = init_attack.run(model, originals, criterion, early_stop=early_stop)
        else:
            raise ValueError("starting_points {} doesn't exist.".format(starting_points))

        assert self._is_adversarial(best_advs).all()

        # Initialize the direction orthogonalized with the first direction
        fd = best_advs - originals
        norm = ep.norms.l2(fd.flatten(1), axis=1)
        fd = fd / atleast_kd(norm, fd.ndim)
        self._directions_ortho = {i: v.expand_dims(0) for i, v in enumerate(fd)}

        # Load Basis
        if "basis_params" in kwargs:
            self._basis = Basis(originals, **kwargs["basis_params"])
        else:
            self._basis = Basis(originals)

        for _ in range(self._steps):
            # Get candidates. Shape: (n_candidates, batch_size, image_size)
            candidates = self._get_candidates(originals, best_advs)
            candidates = candidates.transpose((1, 0, 2, 3, 4))

            
            best_candidates = ep.zeros_like(best_advs).raw
            for i, o in enumerate(originals):
                o_repeated = ep.concatenate([o.expand_dims(0)] * len(candidates[i]), axis=0)
                index = ep.argmax(self.distance(o_repeated, candidates[i])).raw
                best_candidates[i] = candidates[i][index].raw

            is_success = self.distance(best_candidates, originals) < self.distance(best_advs, originals)
            best_advs = ep.where(atleast_kd(is_success, best_candidates.ndim), ep.astensor(best_candidates), best_advs)

            if all(v > self._max_queries for v in self._nqueries.values()):
                print("Max queries attained for all the images.")
                break
        return restore_type(best_advs)
예제 #19
0
def dist_to_col(dist, color, blend, t):
    msk = ep.clip((dist + blend) / (2.0 * blend), 0.0, 1.0)
    msk = msk * msk * (3.0 - 2.0 * msk)
    msk = msk.expand_dims(axis=2).tile([1, 1, 3])
    col_t = ep.astensor(color).expand_dims(axis=0).expand_dims(axis=0).tile(
        [t.shape[0], t.shape[1], 1])
    return msk * t + (1.0 - msk) * col_t
예제 #20
0
def test_linf_fast_gradient_attack():
    channels = 3
    batch_size = 8
    h = w = 32
    bounds = (0, 1)

    class Model(nn.Module):
        def forward(self, x):
            x = torch.mean(x, 3)
            x = torch.mean(x, 2)
            return x

    model = Model().eval()
    fmodel = PyTorchModel(model, bounds=bounds)

    np.random.seed(0)
    x = np.random.uniform(*bounds, size=(batch_size, channels, h, w)).astype(np.float32)
    x = torch.from_numpy(x).to(fmodel.device)
    y = fmodel.forward(x).argmax(axis=-1)

    attack = LinfinityFastGradientAttack(fmodel)
    advs = attack(x, y, rescale=False, epsilon=0.3)

    perturbations = ep.astensor(advs - x)
    y_advs = fmodel.forward(advs).argmax(axis=-1)

    assert x.shape == advs.shape
    assert perturbations.abs().max() <= 0.3 + 1e-7
    assert (y_advs == y).float().mean() < 1
예제 #21
0
    def get_zig_zag_mask(self, frequence_range: Tuple[float, float], mask_shape: Tuple[int, int] = (8, 8)) -> Any:
        total_component = mask_shape[0] * mask_shape[1]
        n_coeff_kept = int(total_component * min(1, frequence_range[1]))
        n_coeff_to_start = int(total_component * max(0, frequence_range[0]))

        imsize = self._originals.shape
        mask_shape = (imsize[0], imsize[1], mask_shape[0], mask_shape[1])
        mask = ep.zeros(self._originals, mask_shape).raw
        s = 0
        
        while n_coeff_kept > 0:
            for i in range(min(s + 1, mask_shape[2])):
                for j in range(min(s + 1, mask_shape[3])):
                    if i + j == s:
                        if n_coeff_to_start > 0:
                            n_coeff_to_start -= 1
                            continue

                        if s % 2:
                            mask[:, :, i, j] = 1
                        else:
                            mask[:, :, j, i] = 1
                        n_coeff_kept -= 1
                        if n_coeff_kept == 0:
                            return mask
            s += 1
        return ep.astensor(mask)
예제 #22
0
 def idct2_8_8(self, dct: ep.astensor) -> ep.astensor:
     im_dct = ep.zeros_like(dct).raw
     dct = dct.raw
     for i in np.r_[:dct.shape[2]:8]:
         for j in np.r_[:dct.shape[3]:8]:
             im_dct[:, :, i:(i+8),j:(j+8)] = self._f_idct2(dct[:, :, i:(i+8),j:(j+8)])
     return ep.astensor(im_dct)
예제 #23
0
 def _add_step_in_circular_direction(degree: ep.Tensor) -> ep.Tensor:
     degree = atleast_kd(degree, direction1.ndim).raw * np.pi / 180
     results = self._cos(degree) * direction1 + self._sin(degree) * direction2
     results = (originals + ep.astensor(results * distances * self._cos(degree))).clip(0, 1)
     if self.with_quantification:
         results = self._quantify(results)
     return results
def test_l1_brendel_bethge_attack():
    channels = 3
    batch_size = 8
    h = w = 32
    bounds = (0, 1)

    class Model(nn.Module):
        def forward(self, x):
            x = torch.mean(x, 3)
            x = torch.mean(x, 2)
            return x

    model = Model().eval()
    fmodel = PyTorchModel(model, bounds=bounds)

    np.random.seed(0)
    x = np.random.uniform(*bounds,
                          size=(batch_size, channels, h, w)).astype(np.float32)
    x = torch.from_numpy(x).to(fmodel.device)
    y = fmodel.forward(x).argmax(axis=-1)

    attack = L1BrendelBethgeAttack(fmodel)
    advs = attack(x, y, steps=100, lr_num_decay=10)

    perturbations = ep.astensor(advs - x)
    norms = flatten(perturbations).abs().sum(axis=-1)
    y_advs = fmodel.forward(advs).argmax(axis=-1)

    assert x.shape == advs.shape
    assert norms.max().item() <= 32 * 32 * 3 / 2
    assert (y_advs == y).float().mean() < 1e-5
예제 #25
0
    def __call__(self, inputs, labels, *, directions=1000, steps=1000):
        x = ep.astensor(inputs)
        min_, max_ = self.model.bounds()

        N = len(x)

        assert directions >= 1
        for j in range(directions):
            # random noise inputs tend to be classified into the same class,
            # so we might need to make very many draws if the original class
            # is that one
            random_ = ep.uniform(x, x.shape, min_, max_)
            logits_ = self.model.forward(random_)
            classes_ = logits_.argmax(axis=-1)
            is_adv_ = atleast_kd(classes_ != labels, x.ndim)

            if j == 0:
                random = random_
                is_adv = is_adv_
            else:
                cond1 = is_adv.astype(x.dtype)
                cond2 = is_adv_.astype(x.dtype)
                random = cond1 * random + (1 - cond1) * cond2 * random_
                is_adv = is_adv.logical_or(is_adv_)

            if is_adv.all():
                break

        if not is_adv.all():
            warnings.warn(
                f"{self.__class__.__name__} failed to draw sufficent random"
                " inputs that are adversarial ({is_adv.sum()} / {N}).")

        x0 = x

        npdtype = x.numpy().dtype
        epsilons = np.linspace(0, 1, num=steps + 1, dtype=npdtype)
        best = np.ones((N, ), dtype=npdtype)

        for epsilon in epsilons:
            x = (1 - epsilon) * x0 + epsilon * random
            # TODO: due to limited floating point precision, clipping can be required
            logits = self.model.forward(x)
            classes = logits.argmax(axis=-1)
            is_adv = (classes != labels).numpy()

            best = np.minimum(
                np.logical_not(is_adv).astype(npdtype) +
                is_adv.astype(npdtype) * epsilon,
                best,
            )

            if (best < 1).all():
                break

        best = ep.from_numpy(x0, best)
        best = atleast_kd(best, x0.ndim)
        x = (1 - best) * x0 + best * random
        return x.tensor
예제 #26
0
파일: conftest.py 프로젝트: zzsd/foolbox
def tensorflow_resnet50(request: Any) -> ModelAndData:
    if request.config.option.skipslow:
        pytest.skip()

    import tensorflow as tf

    if not tf.test.is_gpu_available():
        pytest.skip("ResNet50 test too slow without GPU")

    model = tf.keras.applications.ResNet50(weights="imagenet")
    preprocessing = dict(flip_axis=-1, mean=[104.0, 116.0, 123.0])  # RGB to BGR
    fmodel = fbn.TensorFlowModel(model, bounds=(0, 255), preprocessing=preprocessing)

    x, y = fbn.samples(fmodel, dataset="imagenet", batchsize=16)
    x = ep.astensor(x)
    y = ep.astensor(y)
    return fmodel, x, y
예제 #27
0
def test_pytorch_numpy_compatibility() -> None:
    import numpy as np
    import torch

    x_np = np.random.uniform(0.0, 1.0, size=(16, 3, 64, 64))
    x_torch = torch.from_numpy(x_np)

    x_np_ep = ep.astensor(x_np)
    x_torch_ep = ep.astensor(x_torch)

    x_up_np_ep = rescale_images(x_np_ep, (16, 3, 128, 128), 1)
    x_up_torch_ep = rescale_images(x_torch_ep, (16, 3, 128, 128), 1)

    x_up_np = x_up_np_ep.numpy()
    x_up_torch = x_up_torch_ep.numpy()

    assert np.allclose(x_up_np, x_up_torch)
예제 #28
0
def test_jax_numpy_compatibility() -> None:
    import numpy as np
    import jax.numpy as jnp

    x_np = np.random.uniform(0.0, 1.0, size=(16, 3, 64, 64))
    x_jax = jnp.array(x_np)

    x_np_ep = ep.astensor(x_np)
    x_jax_ep = ep.astensor(x_jax)

    x_up_np_ep = rescale_images(x_np_ep, (16, 3, 128, 128), 1)
    x_up_jax_ep = rescale_images(x_jax_ep, (16, 3, 128, 128), 1)

    x_up_np = x_up_np_ep.numpy()
    x_up_jax = x_up_jax_ep.numpy()

    assert np.allclose(x_up_np, x_up_jax)
예제 #29
0
 def get_match_target(targets, labels):
     import torch
     result = []
     if isinstance(labels, ep.Tensor):
         labels = labels.raw
     for label in labels:
         result.append(targets[label, :])
     return ep.astensor(torch.tensor(result).to("cuda"))
예제 #30
0
def images(
        images,
        *,
        n=None,
        data_format=None,
        bounds=(0, 1),
        ncols=None,
        nrows=None,
        figsize=None,
        scale=1,
        **kwargs,
):
    x = ep.astensor(images)
    assert x.ndim == 4
    if n is not None:
        x = x[:n]
    if data_format is None:
        channels_first = x.shape[1] == 1 or x.shape[1] == 3
        channels_last = x.shape[-1] == 1 or x.shape[-1] == 3
        if channels_first == channels_last:
            raise ValueError("data_format ambigous, please specify explicitly")
    else:
        channels_first = data_format == "channels_first"
        channels_last = data_format == "channels_last"
    assert channels_first != channels_last
    x = x.numpy()
    if channels_first:
        x = np.transpose(x, axes=(0, 2, 3, 1))
    min_, max_ = bounds
    x = (x - min_) / (max_ - min_)

    if nrows is None and ncols is None:
        nrows = 1
    if ncols is None:
        ncols = (len(x) + nrows - 1) // nrows
    elif nrows is None:
        nrows = (len(x) + ncols - 1) // ncols
    if figsize is None:
        figsize = (ncols * scale, nrows * scale)
    fig, axes = plt.subplots(
        ncols=ncols,
        nrows=nrows,
        figsize=figsize,
        squeeze=False,
        constrained_layout=True,
        **kwargs,
    )

    for row in range(nrows):
        for col in range(ncols):
            ax = axes[row][col]
            ax.set_xticks([])
            ax.set_yticks([])
            ax.axis("off")
            i = row * ncols + col
            if i < len(x):
                ax.imshow(x[i])