def build_eval_metrics(self, logits, labels): """ Building evaluation metrics while evaluating Args: logits (`Tensor`): list of tensors shape of [None, num_labels] labels (`Tensor`): shape of [None] Returns: ret_dict (`dict`): A dict of each layer accuracy tf.metrics op """ if self.config.train_probes: return teacher_probes_eval_metrics(logits, labels, self.config.num_labels) else: return classification_eval_metrics(logits[0], labels, self.config.num_labels)
def build_eval_metrics(self, logits, labels): """ Building evaluation metrics while evaluating Args: logits (`Tensor`): shape of [None, num_labels] labels (`Tensor`): shape of [None] Returns: ret_dict (`dict`): A dict with (`py_accuracy`, `py_micro_f1`, `py_macro_f1`) tf.metrics op """ if hasattr(self.config, "multi_label") and self.config.multi_label: return multi_label_eval_metrics(logits, labels, self.config.num_labels) elif self.config.num_labels == 1: return regression_eval_metrics(logits, labels) else: return classification_eval_metrics(logits, labels, self.config.num_labels)
def build_eval_metrics(self, logits, labels): return classification_eval_metrics(logits, labels, self.num_labels)
def build_eval_metrics(self, logits, labels): if _APP_FLAGS.task_name == "CoLA": return matthew_corr_metrics(logits, labels) else: return classification_eval_metrics(logits, labels, self.num_labels)