def req_channel_type(): hfl_chnl_proto_obj.required_devicesData = True payload = hfl_chnl_proto_obj.SerializeToString() # print "payload :: ", payload hfl_publ_obj.send(payload) ecal.finalize()
def req_image_data(): hfl_chnl_proto_obj.isReady = True payload = hfl_chnl_proto_obj.SerializeToString() # print "payload :: ", payload hfl_publ_obj.send(payload) ecal.finalize()
def req_timestamp(): dvc_data_proto_obj = common_pb2.DevicesDataRequest() dvc_data_proto_obj.requiredDevicesData = True payload = dvc_data_proto_obj.SerializeToString() # print "payload :: ", payload tmstamp_publ_obj.send(payload) ecal.finalize()
def req_image_data(): hfl_req_proto_obj.required_timestamp = 1524659296562401 hfl_req_proto_obj.request_channel_name = 'svu32x_rear' hfl_req_proto_obj.request_device_name = 'svu32' payload = hfl_req_proto_obj.SerializeToString() # print "payload :: ", payload hfl_publ_obj.send(payload) ecal.finalize()
def request_hfl_data(): # while ecal.ok(): # hfl_req_proto_obj.required_timestamp = 1504816617728550 hfl_req_proto_obj.image_index = 8 #1504816617788522 # hfl_req_proto_obj.hfl_file_name = "D:\\Work\\2018\\code\\LT5G\\HDF5_reader\\2017.09.07_at_20.37.57_camera-mi_1449.h5" hfl_publ_obj.send(hfl_req_proto_obj.SerializeToString()) ecal.finalize()
def req_pcl_points(): pcl_data_proto_obj = common_pb2.DataRequest() pcl_data_proto_obj.requiredTimestamp = 1521225338975243 #1521225351544589 pcl_data_proto_obj.requestDeviceName = "HFL" pcl_data_proto_obj.requestChannelName = "Valodyne" pcl_data_proto_obj.uniqueId = 1 payload = pcl_data_proto_obj.SerializeToString() # print "payload :: ", payload pcl_publ_obj.send(payload) ecal.finalize()
r = results[0] ed_time = datetime.now() duration = ed_time - st_time print("detection done in ... ", duration) # If visualization flag is set to True in topics.json file it would pop an # image with masks, object classes if vis_flag: show_detected_img(re_img_np_ary, r['rois'], r['class_ids'], r['masks']) # Arrange the detected output in a dictionary # key: tuple having co-ordinates of BBox # value: tuple, 1st value is class id, 2nd value is a mask of numpy array rois_tupl_conv_lst = [tuple(ech_roi) for ech_roi in r['rois'].tolist()] N = r['rois'].shape[0] # print("N :: ", N) mask_obj_lst = [] for i in range(N): mask = r['masks'][:, :, i] # print("mask >> ", type(mask)) mask_obj_lst.append(mask) # detected_dict = dict(zip(rois_tupl_conv_lst, r['class_ids'].tolist())) clsid_mask_tupl = zip(r['class_ids'].tolist(), mask_obj_lst) detected_dict = dict(zip(rois_tupl_conv_lst, clsid_mask_tupl)) # Publish the class name, bounding box coordinates and the mask numpy array # over prototobuf layer publish_rois(detected_dict) print("published response", datetime.now()) ecal.finalize()