def lfw_view2_random_AdaboostMixture(host, dbname, A): trials = MongoTrials( 'mongo://%s:44556/%s/jobs' % (host, dbname), exp_key=exp_keys['random'], refresh=True) bandit = MultiBandit() mix = AdaboostMixture(trials, bandit, test_mask=True) # XXX: Should the weights be used? I don't think so, we're basically # doing LPBoost at this point specs, weights, tids = mix.mix_models(int(A), ret_tids=True) assert len(specs) == len(tids) namebases = [] for spec, tid in zip(specs, tids): # -- allow this feature cache to be # reused by AdaboostMixture and # SimpleMixtures of different # sizes #XXX: Potentially affected by the tid/injected jobs bug, # but unlikely. Rerun just in case once dual svm solver is in. namebase = '%s_%s' % (dbname, tid) namebases.append(namebase) get_view2_features( slm_desc=spec['model']['slm'], preproc=spec['model']['preproc'], comparison=spec['comparison'], namebase=namebase, basedir=os.getcwd(), ) basedirs = [os.getcwd()] * len(namebases) train_view2(namebases=namebases, basedirs=basedirs)
def lfw_view2_final_get_mix(host='honeybadger.rowland.org', dbname='final_random', A=100): trials = MongoTrials( 'mongo://%s:44556/%s/jobs' % (host, dbname), exp_key=exp_keys['random'], refresh=True) return trials bandit = MultiBandit() simple_mix = SimpleMixture(trials, bandit) simple_mix_trials = simple_mix.mix_trials(int(A)) ada_mix = AdaboostMixture(trials, bandit) ada_mix_trials = ada_mix.mix_trials(int(A)) return simple_mix_trials, ada_mix_trials