예제 #1
0
def dotheconstraint_all(xem,
                        yem,
                        x1mem,
                        y1mem,
                        obsx,
                        sigxem=None,
                        sigyem=None,
                        sigx1mem=None,
                        sigy1mem=None,
                        rxyem=None,
                        rxy1mem=None,
                        seed=None,
                        nboots=1000,
                        method='OLS'):

    # do the constraint with everything included.

    # check that all the needed things are there for the method
    if sigyem is None:
        print(
            "You need to specify the sigma_y's for the ensemble mean for any constraint"
        )
        sys.exit()
    if sigx1mem is None:
        print(
            "You need to specify the sigma_x for 1 member for any constraint")
        sys.exit()
    if sigy1mem is None:
        print(
            "You need to specify the sigma_y for 1 member for any constraint")
        sys.exit()

    if ((method == "TLS") or (method == "BHM")):
        if sigxem is None:
            print(
                "You need to specify the sigma_x for the ensemble mean for TLS or BHM"
            )
            sys.exit()

    if ((method != "OLS") and (method != "TLS") and (method != "BHM")):
        print("You have chosen an invalid method.  Choose OLS, TLS or BHM")
        sys.exit()

    if (method == "BHM"):
        if rxyem is None:
            print(
                "You need to specify rxy for the ensemble mean to use the BHM")
            sys.exit()
        if rxy1mem is None:
            print("You need to specify rxy for 1 member to use the BHM")
            sys.exit()

    # calculate the regression coefficients using the ensemble mean
    if (method == 'OLS'):
        print("Constraining using OLS")
        a, b = linfit.linfit_xy(xem, yem, sigma=sigyem)
    if (method == 'TLS'):
        print("Constraining using TLS")
        a, b = linfit.tls(xem, yem, sigxem, sigyem)
    if (method == 'BHM'):
        print("Constraining using the BHM")
        aboots, bboots, del2, mux, delx2 = linfit.bhm(xem,
                                                      yem,
                                                      sigxem,
                                                      sigyem,
                                                      rxyem,
                                                      iseed=3)

    if (method == "BHM"):
        # an array of standard deviations for the forced noise
        sigforced = np.sqrt(del2[:])
        # standard deviation for the internal variability noise component
        sigyiv = np.sqrt((sigy1mem**2) * (1. - rxy1mem**2.))
    else:
        # calculate the single member residuals from the linear regression fit
        # their standard deviation and the standard deviation of the noise term
        # both with (sigwithiv) and without (sigforced) internal variability
        eps = y1mem[:] - (a + b * x1mem[:])
        sigeps = np.std(eps)
        sigwithiv = np.sqrt(sigeps**2 - (b**2) * sigx1mem)
        sigyiv = sigy1mem
        sigforced = np.sqrt(sigwithiv**2. - sigyiv**2.)

    # sampling the uncertainty on the observed predictor
    # 250 values for each observational value
    nobs = obsx.size
    obspdf = np.zeros([nobs * 250])
    obstrue = np.zeros([nobs * 250])
    obssample = np.random.normal(0, sigx1mem, 250)
    for iobs in range(0, obsx.size, 1):
        obspdf[iobs * 250:(iobs + 1) * 250] = obsx[iobs] + obssample[:]
        if (method == "BHM"):
            obstrue[iobs * 250:(iobs + 1) * 250] = obsx[iobs]

    # combine all the sampling
    # OLS and TLS
    if (method != "BHM"):

        # sample the noise terms and regression coefficients
        randomvals = np.random.normal(0, 1, nboots)
        # forced + internal
        noise_withiv = randomvals * np.array(sigwithiv)
        # forced
        noise_forced = randomvals * np.array(sigforced)
        if (method == "OLS"):
            sigxin = None
        if (method == "TLS"):
            sigxin = sigxem
        aboots, bboots = boot.boot_regcoefs(xem, yem, sigx=sigxin, sigy=sigyem)

        # first, regression coefficient uncertainty with observational predictor uncertainty
        y = np.zeros([nobs * 250 * nboots])
        for iboot in range(0, nboots, 1):
            y[iboot * nobs * 250:(iboot + 1) * nobs *
              250] = aboots[iboot] + bboots[iboot] * obspdf[:]

        # now adding on the noise terms
        yplusiv = np.zeros([nobs * 250 * nboots * nboots])
        yforced = np.zeros([nobs * 250 * nboots * nboots])
        for iboot in range(0, nboots, 1):
            yplusiv[iboot * (nobs * 250 * nboots):(iboot + 1) *
                    (nobs * 250 * nboots)] = y[:] + noise_withiv[iboot]
            yforced[iboot * (nobs * 250 * nboots):(iboot + 1) *
                    (nobs * 250 * nboots)] = y[:] + noise_forced[iboot]

    else:
        #sample the noise terms
        # only do internal variability here because forced noise is
        # dependend on delxdelx which is paired with alpha and beta's
        randomvals = np.random.normal(0, 1, nboots * nboots)
        randomvals2 = np.random.normal(0, 1, nboots * nboots)
        noiseiv = np.array(sigyiv) * randomvals2[:]

        yplusiv = np.zeros([nobs * 250 * nboots * nboots])
        yforced = np.zeros([nobs * 250 * nboots * nboots])
        for iboot in range(0, nboots, 1):
            y = np.zeros([nobs * 250])
            y[:] = aboots[iboot] + bboots[iboot] * obspdf[:]
            noise_forced = randomvals[:] * sigforced[iboot]

            yplusivt = np.zeros([nobs * 250 * nboots])
            yforcedt = np.zeros([nobs * 250 * nboots])
            for inoise in range(0, nboots, 1):
                yforcedt[inoise*nboots:(inoise+1)*nboots]=\
                y[inoise]+noise_forced[inoise*nboots:(inoise+1)*nboots]

                yplusivt[inoise*nboots:(inoise+1)*nboots]=\
                yforcedt[inoise*nboots:(inoise+1)*nboots]+\
                noiseiv[inoise] + \
                np.array(rxy1mem)*(np.array(sigy1mem)/np.array(sigx1mem))*(obspdf[:]-obstrue[:])

            yforced[iboot * nobs * 250 * nboots:(iboot + 1) * nobs * 250 *
                    nboots] = yforcedt[:]
            yplusiv[iboot * nobs * 250 * nboots:(iboot + 1) * nobs * 250 *
                    nboots] = yplusivt[:]

    varforced = np.var(yforced)
    varplusiv = np.var(yplusiv)

    return varforced, varplusiv
예제 #2
0
def dotheconstraint_onlycoefs(xem,
                              yem,
                              x1mem,
                              y1mem,
                              obsx,
                              sigxem=None,
                              sigyem=None,
                              sigx1mem=None,
                              sigy1mem=None,
                              rxyem=None,
                              rxy1mem=None,
                              seed=None,
                              nboots=1000,
                              method='OLS'):

    # performing the constraint while only considering the uncertainty in the regerssion coefficients

    # check that all the needed things are there for the method
    if sigyem is None:
        print(
            "You need to specify the sigma_y's for the ensemble mean for any constraint"
        )
        sys.exit()
    if sigx1mem is None:
        print(
            "You need to specify the sigma_x for 1 member for any constraint")
        sys.exit()
    if sigy1mem is None:
        print(
            "You need to specify the sigma_y for 1 member for any constraint")
        sys.exit()

    if ((method == "TLS") or (method == "BHM")):
        if sigxem is None:
            print(
                "You need to specify the sigma_x for the ensemble mean for TLS or BHM"
            )
            sys.exit()

    if ((method != "OLS") and (method != "TLS") and (method != "BHM")):
        print("You have chosen an invalid method.  Choose OLS, TLS or BHM")
        sys.exit()

    if (method == "BHM"):
        if rxyem is None:
            print(
                "You need to specify rxy for the ensemble mean to use the BHM")
            sys.exit()
        if rxy1mem is None:
            print("You need to specify rxy for 1 member to use the BHM")
            sys.exit()

    # calculate the regression coefficients using the ensemble mean
    if (method == 'OLS'):
        print("Constraining using OLS")
        a, b = linfit.linfit_xy(xem, yem, sigma=sigyem)
    if (method == 'TLS'):
        print("Constraining using TLS")
        a, b = linfit.tls(xem, yem, sigxem, sigyem)
    if (method == 'BHM'):
        print("Constraining using the BHM")
        aboots, bboots, del2, mux, delx2 = linfit.bhm(xem,
                                                      yem,
                                                      sigxem,
                                                      sigyem,
                                                      rxyem,
                                                      iseed=3)
        a = np.mean(aboots)
        b = np.mean(bboots)

    # sampling the uncertainty on the observed predictor.
    # 250 values for each observational value.
    nobs = obsx.size
    obsmean = np.mean(obsx)

    if (method != "BHM"):
        if (method == 'OLS'):
            sigxin = None
        if (method == 'TLS'):
            sigxin = sigxem
        aboots, bboots = boot.boot_regcoefs(xem, yem, sigx=sigxin, sigy=sigyem)
    else:
        aboots, bboots, del2, mux, delx2 = linfit.bhm(xem,
                                                      yem,
                                                      sigxem,
                                                      sigyem,
                                                      rxyem,
                                                      iseed=3)

    y = np.zeros([nobs * 250])
    y[:] = aboots[:] + bboots[:] * obsmean

    vary = np.var(y)

    return vary
예제 #3
0
def dotheconstraint_onlyiv(xem,
                           yem,
                           x1mem,
                           y1mem,
                           obsx,
                           sigxem=None,
                           sigyem=None,
                           sigx1mem=None,
                           sigy1mem=None,
                           rxyem=None,
                           rxy1mem=None,
                           seed=None,
                           nboots=1000,
                           method='OLS'):

    # performing the constraint while only considering the internal variability on the future - past
    # difference.

    # check that all the needed things are there for the method
    if sigyem is None:
        print(
            "You need to specify the sigma_y's for the ensemble mean for any constraint"
        )
        sys.exit()
    if sigx1mem is None:
        print(
            "You need to specify the sigma_x for 1 member for any constraint")
        sys.exit()
    if sigy1mem is None:
        print(
            "You need to specify the sigma_y for 1 member for any constraint")
        sys.exit()

    if ((method == "TLS") or (method == "BHM")):
        if sigxem is None:
            print(
                "You need to specify the sigma_x for the ensemble mean for TLS or BHM"
            )
            sys.exit()

    if ((method != "OLS") and (method != "TLS") and (method != "BHM")):
        print("You have chosen an invalid method.  Choose OLS, TLS or BHM")
        sys.exit()

    if (method == "BHM"):
        if rxyem is None:
            print(
                "You need to specify rxy for the ensemble mean to use the BHM")
            sys.exit()
        if rxy1mem is None:
            print("You need to specify rxy for 1 member to use the BHM")
            sys.exit()

    # calculate the regression coefficients using the ensemble mean
    if (method == 'OLS'):
        print("Constraining using OLS")
        a, b = linfit.linfit_xy(xem, yem, sigma=sigyem)
    if (method == 'TLS'):
        print("Constraining using TLS")
        a, b = linfit.tls(xem, yem, sigxem, sigyem)
    if (method == 'BHM'):
        print("Constraining using the BHM")
        aboots, bboots, del2, mux, delx2 = linfit.bhm(xem,
                                                      yem,
                                                      sigxem,
                                                      sigyem,
                                                      rxyem,
                                                      iseed=3)
        a = np.mean(aboots)
        b = np.mean(bboots)

    # sampling the uncertainty on the observed predictor.
    # 250 values for each observational value.
    nobs = obsx.size
    obsmean = np.mean(obsx)

    if (method != "BHM"):
        if (method == 'OLS'):
            sigxin = None
        if (method == 'TLS'):
            sigxin = sigxem
        aboots, bboots = boot.boot_regcoefs(xem, yem, sigx=sigxin, sigy=sigyem)
    else:
        aboots, bboots, del2, mux, delx2 = linfit.bhm(xem,
                                                      yem,
                                                      sigxem,
                                                      sigyem,
                                                      rxyem,
                                                      iseed=3)

    if (method == "BHM"):
        sigforced = np.sqrt(del2[:])
        sigyiv = np.sqrt((sigy1mem**2) * (1. - rxy1mem**2.))
    else:
        eps = y1mem[:] - (a + b * x1mem[:])
        sigeps = np.std(eps)
        sigwithiv = np.sqrt(sigeps**2 - (b**2) * sigx1mem)
        sigyiv = sigy1mem
        sigforced = np.sqrt(sigwithiv**2. - sigyiv**2.)

    randomvals = np.random.normal(0, 1, nboots)
    if (method != "BHM"):
        noise_forced = randomvals * np.array(sigyiv)
        y = np.zeros([nboots])
        y = a + b * obsmean + noise_forced[:]
    else:
        noise_forced = randomvals[:] * np.array(sigyiv)
        y = np.zeros([nboots])
        y = a + b * obsmean + noise_forced[:]

    vary = np.var(y)

    return vary
예제 #4
0
def dotheconstraint_onlyxvar(xem,
                             yem,
                             x1mem,
                             y1mem,
                             obsx,
                             sigxem=None,
                             sigyem=None,
                             sigx1mem=None,
                             sigy1mem=None,
                             rxyem=None,
                             rxy1mem=None,
                             seed=None,
                             nboots=1000,
                             method='OLS'):
    # performing the constraint while only considering the uncertainty in the observed predictor

    # check that all the needed things are there for the method
    if sigyem is None:
        print(
            "You need to specify the sigma_y's for the ensemble mean for any constraint"
        )
        sys.exit()
    if sigx1mem is None:
        print(
            "You need to specify the sigma_x for 1 member for any constraint")
        sys.exit()
    if sigy1mem is None:
        print(
            "You need to specify the sigma_y for 1 member for any constraint")
        sys.exit()

    if ((method == "TLS") or (method == "BHM")):
        if sigxem is None:
            print(
                "You need to specify the sigma_x for the ensemble mean for TLS or BHM"
            )
            sys.exit()

    if ((method != "OLS") and (method != "TLS") and (method != "BHM")):
        print("You have chosen an invalid method.  Choose OLS, TLS or BHM")
        sys.exit()

    if (method == "BHM"):
        if rxyem is None:
            print(
                "You need to specify rxy for the ensemble mean to use the BHM")
            sys.exit()
        if rxy1mem is None:
            print("You need to specify rxy for 1 member to use the BHM")
            sys.exit()

    # calculate the regression coefficients using the ensemble mean
    if (method == 'OLS'):
        print("Constraining using OLS")
        a, b = linfit.linfit_xy(xem, yem, sigma=sigyem)
    if (method == 'TLS'):
        print("Constraining using TLS")
        a, b = linfit.tls(xem, yem, sigxem, sigyem)
    if (method == 'BHM'):
        print("Constraining using the BHM")
        aboots, bboots, del2, mux, delx2 = linfit.bhm(xem,
                                                      yem,
                                                      sigxem,
                                                      sigyem,
                                                      rxyem,
                                                      iseed=3)
        a = np.mean(aboots)
        b = np.mean(bboots)

    # sampling the uncertainty on the observed predictor.
    # 250 values for each observational value.
    nobs = obsx.size
    obstrue = np.zeros([nobs * 250])
    obspdf = np.zeros([nobs * 250])
    obssample = np.random.normal(0, sigx1mem, 250)
    for iobs in range(0, obsx.size, 1):
        obspdf[iobs * 250:(iobs + 1) * 250] = obsx[iobs] + obssample[:]
        if (method == "BHM"):
            obstrue[iobs * 250:(iobs + 1) * 250] = obsx[iobs]

    y = np.zeros([nobs * 250])
    y[:] = a + b * obspdf[:]

    vary = np.var(y)

    return vary
예제 #5
0
def boot_regcoefs(a1, a2, sigx=None, sigy=None, nboots=1000):
    """ Output bootstrap samples of regression coefficients

    Input:
        a1 = first array
        a2 = second array
    Optional input:
        nboots = the number of bootstrap samples used to generate the ci
        sigx = the standard deviation on the predictor points
        sigy = the standard deviation on the predictand points

    Output:
        acoefs = nboots samples of the coefficient a 
        bcoefs = nboots samples of the coefficient b
    
    where y = a + bx
 
    Different regression methods are used 
    depending on the availability of sigx or sigy
    if no sigx then ordinary least squares regression
    if sigx and sigy then total least squares regression
    """

    if (a1.size != a2.size):
        print("The two arrays must have the same size")
        sys.exit()

    samplesize = a1.size
    ranu = np.random.uniform(0, samplesize, nboots * samplesize)
    ranu = np.floor(ranu).astype(int)

    bootdat = np.zeros([samplesize, nboots])
    bootdat1 = np.array(a1[ranu])
    bootdat2 = np.array(a2[ranu])
    bootdat1 = bootdat1.reshape([samplesize, nboots])
    bootdat2 = bootdat2.reshape([samplesize, nboots])

    if sigx is not None:
        bootdatsigx = np.array(sigx[ranu])
        bootdatsigx = bootdatsigx.reshape([samplesize, nboots])
    if sigy is not None:
        bootdatsigy = np.array(sigy[ranu])
        bootdatsigy = bootdatsigy.reshape([samplesize, nboots])

    acoef = np.zeros(nboots)
    bcoef = np.zeros(nboots)

    if sigx is not None:
        for iboot in range(0, nboots, 1):
            acoef[iboot], bcoef[iboot] = linfit.tls(bootdat1[:, iboot],
                                                    bootdat2[:, iboot],
                                                    bootdatsigx[:, iboot],
                                                    bootdatsigy[:, iboot])

    else:
        for iboot in range(0, nboots, 1):
            acoef[iboot], bcoef[iboot] = linfit.linfit_xy(
                bootdat1[:, iboot],
                bootdat2[:, iboot],
                sigma=bootdatsigy[:, iboot])

    return acoef, bcoef
예제 #6
0
def boot_regcoef_ci(a1, a2, conf, sigx=None, sigy=None, nboots=1000):
    """ Output the conf% confidence interval on regression coefficients between 
    two 1 dimensional arrays by bootstrapping with replacement

    Input:
        a1 = first array
        a2 = second array
        conf = the confidence interval you want e.g., 95 for 95% ci (2-sided)
    Optional input:
        nboots = the number of bootstrap samples used to generate the ci
        sigx = the standard deviation on the predictor points
        sigy = the standard deviation on the predictand points

    Output:
        aminci = the minimum range of the confidence interval on a
        amaxci = the maximum range of the confidence interval on a
        bminci = the minimum range of the confidence interval on b 
        bmaxci = the maximum range of the confidence interval on b
    
    where y = a + bx
 
    This assumes a two sided test.  Different regression methods are used 
    depending on the availability of sigx or sigy
    if no sigx then ordinary least squares regression
    if sigx and sigy then total least squares regression
    """

    ptilemin = (100. - conf) / 2.
    ptilemax = conf + (100 - conf) / 2.

    if (a1.size != a2.size):
        print("The two arrays must have the same size")
        sys.exit()

    samplesize = a1.size
    ranu = np.random.uniform(0, samplesize, nboots * samplesize)
    ranu = np.floor(ranu).astype(int)

    bootdat = np.zeros([samplesize, nboots])
    bootdat1 = np.array(a1[ranu])
    bootdat2 = np.array(a2[ranu])
    bootdat1 = bootdat1.reshape([samplesize, nboots])
    bootdat2 = bootdat2.reshape([samplesize, nboots])

    if sigx is not None:
        bootdatsigx = np.array(sigx[ranu])
        bootdatsigx = bootdatsigx.reshape([samplesize, nboots])
    if sigy is not None:
        bootdatsigy = np.array(sigy[ranu])
        bootdatsigy = bootdatsigy.reshape([samplesize, nboots])

    acoef = np.zeros(nboots)
    bcoef = np.zeros(nboots)

    if sigx is not None:
        for iboot in range(0, nboots, 1):
            acoef[iboot], bcoef[iboot] = linfit.tls(bootdat1[:, iboot],
                                                    bootdat2[:, iboot],
                                                    bootdatsigx[:, iboot],
                                                    bootdatsigy[:, iboot])

    else:
        for iboot in range(0, nboots, 1):
            acoef[iboot], bcoef[iboot] = linfit.linfit_xy(
                bootdat1[:, iboot],
                bootdat2[:, iboot],
                sigma=bootdatsigy[:, iboot])

    aminci = np.percentile(acoef, ptilemin)
    amaxci = np.percentile(acoef, ptilemax)
    bminci = np.percentile(bcoef, ptilemin)
    bmaxci = np.percentile(bcoef, ptilemax)

    arange = [aminci, amaxci]
    brange = [bminci, bmaxci]

    return arange, brange, acoef, bcoef
예제 #7
0
def dotheconstraint(xem, yem, x1mem, y1mem, obsx, sigxem=None, sigyem=None,sigx1mem=None,
                    sigy1mem=None, rxyem=None, rxy1mem=None, seed=None, nboots=1000, method='OLS', 
                    outputsamples=False):
    """ Performing the constraint 
    Inputs:
        xem = the ensemble mean predictor
        yem = the ensemble mean predictand
        x1mem = a single member predictor
        y1mem = a single member predictand
        obsx = the observed predictors
        sigxem = the standard deviation on the ensemble mean predictor
        sigyem = the standard deviation on the ensemble mean predictand
        sigx1mem = the standard deviation on the single member predictor
        sigy1mem = the standard deviation on the single member predictand
        rxyem = the ensemble mean correlation between predictor and predictand
        rxy1mem = the single member correlation between predictor and predictand
        seed = a random number seed which may be specified for reproducibility
        nboots = the number of bootstrap samples for each part. Default 1000.
        method = 'OLS', 'TLS' or 'BHM'
        outputsamples = if True, the samples used to build up the constrained distribution are output.
    Outputs: 
        datout = contains the mean, 95% and 66% confidence intervals and the fraction 
         of samples greater than the ensemble mean predictand for both the forced response plus
         internal variability and the forced response in isolation.
    """

    # check that all the needed things are there for the method
    if sigyem is None:
        print("You need to specify the sigma_y's for the ensemble mean for any constraint")
        sys.exit()
    if sigx1mem is None:
        print("You need to specify the sigma_x for 1 member for any constraint")
        sys.exit()
    if sigy1mem is None:
        print("You need to specify the sigma_y for 1 member for any constraint")
        sys.exit()

    if ((method == "TLS") or (method == "BHM")):
        if sigxem is None:
            print("You need to specify the sigma_x for the ensemble mean for TLS or BHM")
            sys.exit() 

    if ((method != "OLS") and (method !="TLS") and (method != "BHM")):
        print("You have chosen an invalid method.  Choose OLS, TLS or BHM")
        sys.exit()

    if (method == "BHM"):
        if rxyem is None:
            print("You need to specify rxy for the ensemble mean to use the BHM")
            sys.exit()
        if rxy1mem is None:
            print("You need to specify rxy for 1 member to use the BHM")
            sys.exit()

    # calculate the regression coefficients using the ensemble mean
    if (method == 'OLS'):
        print("Constraining using OLS")
        a, b = linfit.linfit_xy(xem, yem, sigma=sigyem)
    if (method == 'TLS'):
        print("Constraining using TLS") 
        a, b = linfit.tls(xem, yem, sigxem, sigyem)
    if (method == 'BHM'):
        print("Constraining using the BHM")
        aboots, bboots, del2, mux, delx2 = linfit.bhm(xem, yem, sigxem, sigyem, rxyem, iseed=3)

    if (method == "BHM"): 
        # an array of standard deviations for the forced noise
        sigforced = np.sqrt(del2[:])
        # standard deviation for the internal variability noise component
        sigyiv=np.sqrt( (sigy1mem**2)*(1.-rxy1mem**2.))
    else:
        # calculate the single member residuals from the linear regression fit
        # their standard deviation and the standard deviation of the noise term
        # both with (sigwithiv) and without (sigforced) internal variability
        eps = y1mem[:] - (a + b*x1mem[:])
        sigeps = np.std(eps)
        sigwithiv = np.sqrt(sigeps**2 - (b**2)*sigx1mem)
        sigyiv = sigy1mem
        sigforced = np.sqrt(sigwithiv**2. - sigyiv**2.)

    # sampling the uncertainty on the observed predictor
    # 250 values for each observational value
    nobs=obsx.size
    obspdf = np.zeros([nobs*250])
    obstrue = np.zeros([nobs*250])
    obssample = np.random.normal(0,sigx1mem,250)
    for iobs in range(0,obsx.size,1):
        obspdf[iobs*250:(iobs+1)*250] = obsx[iobs] + obssample[:]
        if (method == "BHM"):
            obstrue[iobs*250:(iobs+1)*250] = obsx[iobs]


    # combine all the sampling
    # OLS and TLS
    if (method != "BHM"):

        # sample the noise terms and regression coefficients
        randomvals = np.random.normal(0,1,nboots)
        # forced + internal
        noise_withiv = randomvals*np.array(sigwithiv)
        # forced
        noise_forced = randomvals*np.array(sigforced)
        if (method == "OLS"):
            sigxin=None
        if (method == "TLS"):
            sigxin=sigxem
        aboots, bboots = boot.boot_regcoefs(xem, yem, sigx=sigxin, sigy=sigyem)

        # first, regression coefficient uncertainty with observational predictor uncertainty
        y = np.zeros([nobs*250*nboots])
        for iboot in range(0,nboots,1):
            y[iboot*nobs*250:(iboot+1)*nobs*250] = aboots[iboot] + bboots[iboot]*obspdf[:]

        # now adding on the noise terms
        yplusiv = np.zeros([nobs*250*nboots*nboots])
        yforced = np.zeros([nobs*250*nboots*nboots])
        for iboot in range(0,nboots,1):
            yplusiv[iboot*(nobs*250*nboots):(iboot+1)*(nobs*250*nboots)] = y[:] + noise_withiv[iboot]
            yforced[iboot*(nobs*250*nboots):(iboot+1)*(nobs*250*nboots)] = y[:] + noise_forced[iboot]
 
    else:
        #sample the noise terms
        # only do internal variability here because forced noise is 
        # dependend on delxdelx which is paired with alpha and beta's
        randomvals = np.random.normal(0,1,nboots*nboots)
        randomvals2 = np.random.normal(0,1,nboots*nboots)
        noiseiv = np.array(sigyiv)*randomvals2[:]
 
        yplusiv = np.zeros([nobs*250*nboots*nboots])
        yforced = np.zeros([nobs*250*nboots*nboots])
        for iboot in range(0,nboots,1):
            y=np.zeros([nobs*250])
            y[:] = aboots[iboot] + bboots[iboot]*obspdf[:]
            noise_forced = randomvals[:]*sigforced[iboot]
            
            yplusivt = np.zeros([nobs*250*nboots])
            yforcedt = np.zeros([nobs*250*nboots])
            for inoise in range(0,nboots,1):
                yforcedt[inoise*nboots:(inoise+1)*nboots]=\
                y[inoise]+noise_forced[inoise*nboots:(inoise+1)*nboots]
        
                yplusivt[inoise*nboots:(inoise+1)*nboots]=\
                yforcedt[inoise*nboots:(inoise+1)*nboots]+\
                noiseiv[inoise] + \
                np.array(rxy1mem)*(np.array(sigy1mem)/np.array(sigx1mem))*(obspdf[:]-obstrue[:])
               
            yforced[iboot*nobs*250*nboots:(iboot+1)*nobs*250*nboots]=yforcedt[:]
            yplusiv[iboot*nobs*250*nboots:(iboot+1)*nobs*250*nboots]=yplusivt[:] 

    meanwithiv = np.mean(yplusiv)
    meanforced = np.mean(yforced)

    print("starting to calculate the percentiles - this could take a while")
    min95withiv = np.percentile(yplusiv, 2.5)
    max95withiv = np.percentile(yplusiv, 97.5)
    min66withiv = np.percentile(yplusiv, 17)
    max66withiv = np.percentile(yplusiv, 83)

    min95forced = np.percentile(yforced, 2.5)
    max95forced = np.percentile(yforced, 97.5)
    min66forced = np.percentile(yforced, 17)
    max66forced = np.percentile(yforced, 83)

    print("calculating the percentage greater than the ensemble mean - this may also take a while")
    ymean = np.mean(yem)
    numberabovey = np.sum(yplusiv > np.array(ymean))
    gtymean_withiv = (numberabovey/float(nobs*250*nboots*nboots))*100.
    numberabovey = np.sum(yforced > np.array(ymean))
    gtymean_forced = (numberabovey/float(nobs*250*nboots*nboots))*100.


    datout={ "meanwithiv":meanwithiv, "meanforced":meanforced,
             "min95withiv":min95withiv, "max95withiv":max95withiv,
             "min66withiv":min66withiv, "max66withiv":max66withiv,
             "min95forced":min95forced, "max95forced":max95forced,
             "min66forced":min66forced, "max66forced":max66forced,
             "gtymean_withiv":gtymean_withiv, "gtymean_forced":gtymean_forced}

    if (outputsamples):
        return datout, yplusiv
    else: 
        return datout