def declare_cells(_p): cells = {} cells['convert2msg'] = CellInfo(ecto_rbo_pcl.PointCloud2Message, name='Converter') cells['publisher'] = CellInfo(ecto_ros.ecto_sensor_msgs.Publisher_PointCloud2, name='Publisher') return cells
def declare_cells(_p): res = { 'camera_info_image': CellInfo(ecto_ros.CameraInfo2Cv), 'camera_info_depth': CellInfo(ecto_ros.CameraInfo2Cv), 'crop_box': CellInfo(CropBox) } if HAS_PCL: res['cloud'] = CellInfo(MatToPointCloudXYZOrganized) return res
def declare_cells(cls, p): return { 'cluster_converter': CellInfo(ClusterConverter), 'pc_publisher': CellInfo(PointCloudPub, params={'latched': p.latched}), 'passthrough': ecto.PassthroughN( items=dict(image_message='The original imagemessage', pose_results='The final results')) }
def declare_cells(cls, _p): # passthrough cells cells = {'json_db': CellInfo(ecto.Constant), 'object_id': CellInfo(ecto.Constant) } # 'real cells' cells.update({'model_filler': CellInfo(ecto_linemod.ModelFiller), 'model_writer': CellInfo(ModelWriter, params={'method':'LINEMOD'}), 'trainer': CellInfo(ecto_linemod.Trainer)}) return cells
def declare_cells(p): cell_types = FeatureDescriptor._figure_out_cell_types(p) cells = {} if cell_types['feature_descriptor_cell'] is not None: cells['feature_descriptor_cell'] = CellInfo( cell_types['feature_descriptor_cell']) else: cells['image_passthrough'] = CellInfo(ecto.Passthrough) cells['mask_passthrough'] = CellInfo(ecto.Passthrough) cells['feature_cell'] = CellInfo(cell_types['feature_cell']) cells['descriptor_cell'] = CellInfo(cell_types['descriptor_cell']) return cells
def declare_cells(cls, p): return { 'table_msg_assembler': CellInfo(TableMsgAssembler), 'table_visualization_msg_assembler': CellInfo(TableVisualizationMsgAssembler), 'marker_array_clusters': CellInfo(MarkerArrayPub), 'table_array': CellInfo(Publisher_TableArray), 'passthrough': ecto.PassthroughN( items=dict(image_message='The original imagemessage', pose_results='The final results')) }
def declare_cells(_p): """ Implement the virtual function from the base class Only cells from which something is forwarded have to be declared """ cells = {} # 'i2' has its start value exposed to the user so only a type is given cells['i2'] = CellInfo(Increment, name='Inc 2') # 'add' is always the same so we could define with a CellInfo(Add, name='Add') or # just with an instance cells['add'] = Add('Add') return cells
def declare_cells(cls, _p): return { 'passthrough': ecto.PassthroughN( items={ 'K_image': 'The original calibration matrix', 'points3d': 'The 3d points as cv::Mat_<cv::Vec3f>.' }), 'table_detector': TableDetector(), 'table_pose': CellInfo(TablePose), 'clusterer': OnPlaneClusterer() }
def declare_cells(_p): res = { 'camera_info_image': CellInfo(ecto_ros.CameraInfo2Cv), 'camera_info_depth': CellInfo(ecto_ros.CameraInfo2Cv), 'crop_box': CellInfo(CropBox), 'depth_map': CellInfo(RescaledRegisteredDepth) } if HAS_PCL: res['cloud'] = CellInfo(MatToPointCloudXYZOrganized) if 'camera' in p['outputs_list']: res['converter'] = CellInfo(CameraFromOpenNI) return res
def declare_cells(_p): from object_recognition_tabletop.ecto_cells import tabletop_object return {'main': CellInfo(tabletop_object.ObjectRecognizer)}
def declare_cells(self, _p): return { 'detector': CellInfo(Detector), 'mat_to_cloud': MatToPointCloudXYZOrganized() }
def declare_cells(cls, p): return {'msg_assembler': CellInfo(PointCloudMsgAssembler), 'passthrough': ecto.PassthroughN(items=dict(pose_results='The final results')) }
def declare_cells(_p): return {'trainer': CellInfo(transparent_objects_cells.Trainer)}
def declare_cells(cls, p): return { 'gen': CellInfo(python_class=ecto_test.Generate), 'inc': CellInfo(python_class=ecto_test.Increment) }
def declare_cells(cls, p): return { 'gen': CellInfo(python_class=MyBlackBox, params={'start': 20}), 'inc': CellInfo(python_class=ecto_test.Increment) }
def declare_cells(p): return { 'cluster_drawer': CellInfo(ClusterDrawer), 'plane_drawer': CellInfo(PlaneDrawer) }