def binary_classification_dataset_setup(iterable_seq=None, negative_shuffle_ratio=None, shuffle_order=None): iter1, iter2 = tee(iterable_seq) iterable_graph = rnafold_to_eden(iter1) iter3 = seq_to_seq(iter2, modifier=shuffle_modifier, times=negative_shuffle_ratio, order=shuffle_order) iterable_graph_neg = rnafold_to_eden(iter3) return iterable_graph, iterable_graph_neg
def transform(self, seqs=None, mfe=False): if mfe is False: graphs = rnashapes_to_eden(seqs, shape_type=self.shape_type, energy_range=self.energy_range, max_num=self.max_num, split_components=self.split_components) else: graphs = rnafold_to_eden(seqs) return graphs
def rna_refold(self, digraph=None, seq=None, vectorizer=None): """ :param digraph: :param seq: :return: will extract a sequence, RNAfold it and create a abstract graph """ # get a sequence no matter what :) if not seq: seq = get_sequence(digraph) # print 'seq:',seq graph = rnafold_to_eden([("emptyheader", seq)], shape_type=5, energy_range=30, max_num=3).next() expanded_graph = self.vectorizer._edge_to_vertex_transform(graph) ex_di_graph = graphlearn.minor.rnaabstract.expanded_rna_graph_to_digraph(expanded_graph) ex_di_graph.graph["sequence"] = seq # abstract_graph = directedgraphtools.direct_abstraction_wrapper(graph,0) return ex_di_graph
def get_graphs(rfam_id = '../example/RF00005',size=9999): seqs = fasta_to_sequence(rfam_uri(rfam_id)) graphs = islice( clean(rnafold_to_eden(seqs, shape_type=5, energy_range=30, max_num=3)), size) return graphs
def get_graphs(rfam_id='../example/RF00005', size=9999): seqs = fasta_to_sequence(rfam_uri(rfam_id)) graphs = islice( clean(rnafold_to_eden(seqs, shape_type=5, energy_range=30, max_num=3)), size) return graphs
def pre_processor_rnafold(seqs): graphs = rnafold_to_eden(seqs) #from eden.modifier.graph import structure #graphs = structure.basepair_to_nesting(graphs) return graphs