def main_feature(model_initializer, args): iterator = model_initializer.load_data(args) from eden.model import ActiveLearningBinaryClassificationModel model = ActiveLearningBinaryClassificationModel() model.load(args.model_file) logger.info(model.get_parameters()) X = model._data_matrix(iterator) store_matrix(matrix=X, output_dir_path=args.output_dir_path, out_file_name='data_matrix', output_format=args.output_format)
def main_matrix(model_initializer, args): iterator = model_initializer.load_data(args) from eden.model import ActiveLearningBinaryClassificationModel model = ActiveLearningBinaryClassificationModel() model.load(args.model_file) logger.info(model.get_parameters()) X = model._data_matrix(iterator) K = metrics.pairwise.pairwise_kernels(X, metric='linear') store_matrix(matrix=K, output_dir_path=args.output_dir_path, out_file_name='Gram_matrix', output_format=args.output_format)
def main_feature(model_initializer, args): iterator = model_initializer.load_data(args) from eden.model import ActiveLearningBinaryClassificationModel model = ActiveLearningBinaryClassificationModel() model.load(args.model_file) logger.info(model.get_parameters()) data_matrix = model._data_matrix(iterator) store_matrix(matrix=data_matrix, output_dir_path=args.output_dir_path, out_file_name='data_matrix', output_format=args.output_format)