def load_models(self, skip_local=False): model_name = list(self.get_models_to_save().keys())[0] if not skip_local: load_path = self.local_models_path / model_name else: load_path = self.models_path / model_name self.agent.value_model = GPQLearning.load(load_path)
def load_models(self, skip_local=False): model_name = list(self.get_models_to_save().keys())[0] if not skip_local: load_path = self.local_models_path / model_name else: load_path = self.models_path / model_name self.agent.value_model = GPQLearning.load(load_path, self.env.staetaction_space, self.x_seed, self.y_seed)