def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ flip = np.random.random() < self.flip_ratio if flip: for key in self.keys: if isinstance(results[key], list): for v in results[key]: if key in ('bbox', 'bboxes'): bboxflip_(v, self.direction, self.Len) elif key in ('flow'): flowflip_(v, self.direction) else: imflip_(v, self.direction) else: if key in ('bbox', 'bboxes'): bboxflip_(results[key], self.direction, self.Len) elif key in ('flow'): raise NotImplementedError( "not implemented flow for just one frame") else: imflip_(results[key], self.direction) results['flip'] = flip results['flip_direction'] = self.direction return results
def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ flip = np.random.random() < self.flip_ratio if flip: for key in self.keys: if isinstance(results[key], list): for v in results[key]: imflip_(v, self.direction) else: imflip_(results[key], self.direction) results['flip'] = flip results['flip_direction'] = self.direction return results