def define_val_model(self, N, P, K): # Define new graph self.z_test = Gamma(2. * tf.ones([N, K]), 1. * tf.ones([N, K])) self.l_test = TransformedDistribution( distribution=Normal(self.mean_llib * tf.ones([N, 1]), np.sqrt(self.std_llib) * tf.ones([N, 1])), bijector=tf.contrib.distributions.bijectors.Exp()) rho_test = tf.matmul(self.z_test, self.W0) rho_test = rho_test / tf.reshape(tf.reduce_sum(rho_test, axis=1), (-1, 1)) # NxP self.lam_test = Gamma(self.r, self.r / (rho_test * self.l_test)) if self.zero_inflation: logit_pi_test = tf.matmul(self.z_test, self.W1) pi_test = tf.minimum( tf.maximum(tf.nn.sigmoid(logit_pi_test), 1e-7), 1. - 1e-7) cat_test = Categorical( probs=tf.stack([pi_test, 1. - pi_test], axis=2)) components_test = [ Poisson(rate=1e-30 * tf.ones([N, P])), Poisson(rate=self.lam_test) ] self.likelihood_test = Mixture(cat=cat_test, components=components_test) else: self.likelihood_test = Poisson(rate=self.lam_test)
def __init__(self, datastore=None, USE_FEEDBACK=USE_FEEDBACK): """Set the variables and load model data.""" self.datastore = datastore self.USE_FEEDBACK = convert_string2bool_env(USE_FEEDBACK) self.package_id_dict = OrderedDict() self.id_package_dict = OrderedDict() self.beta = None self.theta = None self.alpha = None self.manifest_id_dict = OrderedDict() self.feedback_id_dict = OrderedDict() self.manifests = 0 self.packages = 0 self.epsilon = Gamma(tf.constant( a_c), tf.constant(a_c) / tf.constant(b_c)).\ prob(tf.constant(K, dtype=tf.float32)).eval(session=tf.Session()) self.theta_dummy = Poisson( np.array([ self.epsilon * Gamma(tf.constant(a), self.epsilon).prob( tf.constant(K, dtype=tf.float32)).eval(session=tf.Session()) ] * K, dtype=float)) if isinstance(datastore, S3DataStore): # pragma: no-cover self.load_s3() else: self.load_local() self.manifests = self.theta.shape[0] self.packages = self.beta.shape[0] self.dummy_result = self.theta_dummy.prob( self.beta).eval(session=tf.Session())
def test_map_default(self): with self.test_session() as sess: x = Gamma(2.0, 0.5) inference = ed.MAP([x]) inference.initialize(auto_transform=True, n_iter=500) tf.global_variables_initializer().run() for _ in range(inference.n_iter): info_dict = inference.update() # Check approximation on constrained space has same mode as # target distribution. qx = inference.latent_vars[x] stats = sess.run([x.mode(), qx]) self.assertAllClose(stats[0], stats[1], rtol=1e-5, atol=1e-5)
def test_map_custom(self): with self.test_session() as sess: x = Gamma(2.0, 0.5) qx = PointMass(tf.nn.softplus(tf.Variable(0.5))) inference = ed.MAP({x: qx}) inference.initialize(auto_transform=True, n_iter=500) tf.global_variables_initializer().run() for _ in range(inference.n_iter): info_dict = inference.update() # Check approximation on constrained space has same mode as # target distribution. stats = sess.run([x.mode(), qx]) self.assertAllClose(stats[0], stats[1], rtol=1e-5, atol=1e-5)
def test_nonnegative(self): with self.test_session(): x = Gamma(1.0, 1.0) y = ed.transform(x) self.assertIsInstance(y, TransformedDistribution) sample = y.sample(10, seed=1).eval() self.assertSamplePosNeg(sample)
def define_stochastic_model(self, P, K): M = self.minibatch_size self.W0 = Gamma(0.1 * tf.ones([K, P]), 0.3 * tf.ones([K, P])) if self.zero_inflation: self.W1 = Normal(tf.zeros([K, P]), tf.ones([K, P])) self.z = Gamma(2. * tf.ones([M, K]), 1. * tf.ones([M, K])) self.r = Gamma(2. * tf.ones([ P, ]), 1. * tf.ones([ P, ])) self.l = TransformedDistribution( distribution=Normal(self.mean_llib * tf.ones([M, 1]), self.std_llib * tf.ones([M, 1])), bijector=tf.contrib.distributions.bijectors.Exp()) self.rho = tf.matmul(self.z, self.W0) self.rho = self.rho / tf.reshape(tf.reduce_sum(self.rho, axis=1), (-1, 1)) # NxP self.lam = Gamma(self.r, self.r / (self.rho * self.l)) if self.zero_inflation: self.logit_pi = tf.matmul(self.z, self.W1) self.pi = tf.minimum( tf.maximum(tf.nn.sigmoid(self.logit_pi), 1e-7), 1. - 1e-7) self.cat = Categorical( probs=tf.stack([self.pi, 1. - self.pi], axis=2)) self.components = [ Poisson(rate=1e-30 * tf.ones([M, P])), Poisson(rate=self.lam) ] self.likelihood = Mixture(cat=self.cat, components=self.components) else: self.likelihood = Poisson(rate=self.lam)
def gamma_q(shape): # Parameterize Gamma q's via shape and scale, with softplus unconstraints. min_shape = 1e-3 min_scale = 1e-5 shape_init = 0.5 + 0.1 * tf.random_normal(shape) scale_init = 0.1 * tf.random_normal(shape) rv = Gamma( tf.maximum(tf.nn.softplus(tf.Variable(shape_init)), min_shape), tf.maximum(1.0 / tf.nn.softplus(tf.Variable(scale_init)), 1.0 / min_scale)) return rv
def __init__(self, datastore=None, scoring_region=HPF_SCORING_REGION): """Set the variables and load model data.""" self.datastore = datastore self.scoring_region = scoring_region self.package_id_dict = None self.id_package_dict = None self.rating_matrix = None self.beta = None self.manifest_id_dict = None self.manifests = 0 self.packages = 0 self.sess = tf.Session() self.epsilon = Gamma(tf.constant( a_c), tf.constant(a_c) / tf.constant(b_c)).eval(session=self.sess) self.theta = np.array([self.epsilon * Gamma(tf.constant( a), self.epsilon).eval(session=self.sess)] * K) self.loadS3() self.dummy_result = Poisson( np.dot(self.theta, np.transpose(self.beta))).eval(session=self.sess) self.normalize_result()
def check(dist): q_s = Gamma(a_s, b_s) q_v = Gamma(a_v, b_v) sess = tf.InteractiveSession() init = tf.global_variables_initializer() init.run() no_sample = 100 s_sample = q_s.sample(no_sample).eval() v_sample = q_v.sample(no_sample).eval() n = np.zeros([C_u, C_i]) result = np.zeros([C_u, C_i]) n_expected = np.zeros([C_u, C_i]) for i in range(0, no_sample): n = np.add(n, np.matmul(s_sample[i], np.transpose(v_sample[i]))) n_expected = n / no_sample #mean of poisson is rate param. So this is fine. #sample response #distribution specific result = dist_mean(dist, n_expected) return mae(result)
def recommend_new_user(self, input_user_stack, k=config.K): """Implement the 'fold-in' logic. Calculates user factors for a new user and adds the user to the user matrix to make prediction. """ # initializing parameters _logger.info( "Could not find a match, calculating factors to recommend.") k_shp = a_c + k * a # TODO: t_shp, Why is it not required here? nY = len(input_user_stack) Y = np.ones(shape=(nY, )) seed = np.random.seed(int(time.time())) theta = Gamma(a, 1 / b_c).sample(sample_shape=(k, ), seed=seed).eval(session=tf.Session()) k_rte = b_c + np.sum(theta) gamma_rte = \ Gamma(a_c, b_c / a_c).sample( sample_shape=(1,), seed=seed).eval(session=tf.Session()) + self.beta.sum(axis=0) gamma_shp = \ gamma_rte * theta * \ Uniform(low=.85, high=1.15).sample( sample_shape=(k,), seed=seed).eval(session=tf.Session()) np.nan_to_num(gamma_shp, copy=False) np.nan_to_num(gamma_rte, copy=False) phi = np.empty((nY, k), dtype='float32') add_k_rte = a_c / b_c theta_prev = theta.copy() # running the loop for iter_num in range(iter_score): for i in range(nY): iid = input_user_stack[i] sumphi = 10e-6 maxval = -10**1 phi_st = i for j in range(k): phi[phi_st, j] = psi(gamma_shp[j]) - log(gamma_rte[j]) + psi( self.lam_shp[iid, j]) - log(self.lam_rte[iid, j]) if phi[phi_st, j] > maxval: maxval = phi[phi_st, j] for j in range(k): phi[phi_st, j] = exp(phi[phi_st, j] - maxval) sumphi += phi[phi_st, j] for j in range(k): phi[phi_st, j] *= Y[i] / sumphi gamma_rte = (k_shp / k_rte + self.beta.sum(axis=0, keepdims=True)).reshape(-1) gamma_shp = a + phi.sum(axis=0) theta = gamma_shp / gamma_rte k_rte = add_k_rte + theta.sum() # checking for early stop if np.linalg.norm(theta - theta_prev) < stop_thr: break theta_prev = theta.copy() rec = np.dot(theta, self.beta.T) return self.filter_recommendation(rec, input_user_stack)
def gamma_q(shape, name=None): # Parameterize Gamma q's via shape and scale, with softplus unconstraints. with tf.variable_scope(name, default_name="gamma_q"): min_shape = 1e-3 min_scale = 1e-5 shape_var = tf.get_variable( "shape", shape, initializer=tf.random_normal_initializer(mean=0.5, stddev=0.1)) scale_var = tf.get_variable( "scale", shape, initializer=tf.random_normal_initializer(stddev=0.1)) rv = Gamma(tf.maximum(tf.nn.softplus(shape_var), min_shape), tf.maximum(1.0 / tf.nn.softplus(scale_var), 1.0 / min_scale)) return rv
def main(_): ed.set_seed(42) # Prior on scalar hyperparameter to Dirichlet. alpha = Gamma(1.0, 1.0) # Prior on size of Dirichlet. n = 1 + tf.cast(Exponential(0.5), tf.int32) # Build a vector of ones whose size is n; multiply it by alpha. p = Dirichlet(tf.ones([n]) * alpha) sess = ed.get_session() print(sess.run(p)) # [ 0.01012419 0.02939712 0.05036638 0.51287931 0.31020424 0.0485355 # 0.0384932 ] print(sess.run(p))
def define_model(self, N, P, K, batch_idx=None): self.W0 = Gamma(.1 * tf.ones([K + self.n_batches, P]), .3 * tf.ones([K + self.n_batches, P])) if self.zero_inflation: self.W1 = Normal(tf.zeros([K + self.n_batches, P]), tf.ones([K + self.n_batches, P])) self.z = Gamma(2. * tf.ones([N, K]), 1. * tf.ones([N, K])) disp_size = 1 if self.gene_dispersion: disp_size = P self.r = Gamma(2. * tf.ones([ disp_size, ]), 1. * tf.ones([ disp_size, ])) self.l = TransformedDistribution( distribution=Normal(self.mean_llib * tf.ones([N, 1]), np.sqrt(self.std_llib) * tf.ones([N, 1])), bijector=tf.contrib.distributions.bijectors.Exp()) if batch_idx is not None and self.n_batches > 0: self.rho = tf.matmul( tf.concat([ self.z, tf.cast(tf.one_hot(batch_idx[:, 0], self.n_batches), tf.float32) ], axis=1), self.W0) else: self.rho = tf.matmul(self.z, self.W0) if self.scalings: self.rho = self.rho / tf.reshape(tf.reduce_sum(self.rho, axis=1), (-1, 1)) # NxP self.lam = Gamma(self.r, self.r / (self.rho * self.l)) else: self.lam = Gamma(self.r, self.r / self.rho) if self.zero_inflation: if batch_idx is not None and self.n_batches > 0: self.logit_pi = tf.matmul( tf.concat([ self.z, tf.cast(tf.one_hot(batch_idx[:, 0], self.n_batches), tf.float32) ], axis=1), self.W1) else: self.logit_pi = tf.matmul(self.z, self.W1) self.pi = tf.minimum( tf.maximum(tf.nn.sigmoid(self.logit_pi), 1e-7), 1. - 1e-7) self.cat = Categorical( probs=tf.stack([self.pi, 1. - self.pi], axis=2)) self.components = [ Poisson(rate=1e-30 * tf.ones([N, P])), Poisson(rate=self.lam) ] self.likelihood = Mixture(cat=self.cat, components=self.components) else: self.likelihood = Poisson(rate=self.lam)
"qhinge_loc", shape=X_hinge_grid.shape, initializer=tf.random_normal_initializer( mean=X_hinge_grid * tf.ones(shape=X_hinge_grid.shape, dtype=tfdt), stddev=0.001 * tf.ones(shape=X_hinge_grid.shape, dtype=tfdt))), scale=softplus( tf.get_variable( "qhinge_scale", shape=X_hinge_grid.shape, initializer=tf.random_normal_initializer( mean=2.0, stddev=0.1)))) gamma_shape = 1.05 gamma_rate = 12.0 gamma = Gamma(gamma_shape, gamma_rate, sample_shape=[1, M - 1]) qgamma = lognormal_q([1, M - 1]) # Model definition X_plh = tf.placeholder(tfdt, shape=[N, D]) PHI = rbf_kernel(X=X_plh, Y=hinge_grid, gamma=gamma, tfdt=tfdt) w = Normal(loc=tf.zeros((M, 1), dtype=tfdt), scale=900 * tf.ones((M, 1), dtype=tfdt)) y = Bernoulli(logits=tf.matmul(PHI, w)) # Variational distributions qw_loc = tf.get_variable("qw_loc", [M, 1], dtype=tfdt) qw_scale = softplus(120 * tf.get_variable("qw_scale", [M, 1], dtype=tfdt)) qw = Normal(loc=qw_loc, scale=qw_scale) # Inference settings
def evaluate_loglikelihood(self, X, batch_idx=None): """ This is the ELBO, which is a lower bound on the marginal log-likelihood. We perform some local optimization on the new data points to obtain the ELBO of the new data. """ N = X.shape[0] P = X.shape[1] K = self.n_components # Define new graph conditioned on the posterior global factors z_test = Gamma(2. * tf.ones([N, K]), 1. * tf.ones([N, K])) l_test = TransformedDistribution( distribution=Normal(self.mean_llib * tf.ones([N, 1]), np.sqrt(self.std_llib) * tf.ones([N, 1])), bijector=tf.contrib.distributions.bijectors.Exp()) if batch_idx is not None and self.n_batches > 0: rho_test = tf.matmul( tf.concat([ z_test, tf.cast(tf.one_hot(batch_idx[:, 0], self.n_batches), tf.float32) ], axis=1), self.W0) else: rho_test = tf.matmul(z_test, self.W0) rho_test = rho_test / tf.reshape(tf.reduce_sum(rho_test, axis=1), (-1, 1)) # NxP lam_test = Gamma(self.r, self.r / (rho_test * l_test)) if self.zero_inflation: if batch_idx is not None and self.n_batches > 0: logit_pi_test = tf.matmul( tf.concat([ z_test, tf.cast(tf.one_hot(batch_idx[:, 0], self.n_batches), tf.float32) ], axis=1), self.W1) else: logit_pi_test = tf.matmul(z_test, self.W1) pi_test = tf.minimum( tf.maximum(tf.nn.sigmoid(logit_pi_test), 1e-7), 1. - 1e-7) cat_test = Categorical( probs=tf.stack([pi_test, 1. - pi_test], axis=2)) components_test = [ Poisson(rate=1e-30 * tf.ones([N, P])), Poisson(rate=lam_test) ] likelihood_test = Mixture(cat=cat_test, components=components_test) else: likelihood_test = Poisson(rate=lam_test) qz_test = TransformedDistribution( distribution=Normal( tf.Variable(tf.ones(z_test.shape)), tf.nn.softplus(tf.Variable(1. * tf.ones(z_test.shape)))), bijector=tf.contrib.distributions.bijectors.Exp()) qlam_test = TransformedDistribution( distribution=Normal( tf.Variable(tf.ones(lam_test.shape)), tf.nn.softplus(tf.Variable(0.01 * tf.ones(lam_test.shape)))), bijector=tf.contrib.distributions.bijectors.Exp()) ql_test = TransformedDistribution( distribution=Normal( tf.Variable(self.mean_llib * tf.ones(l_test.shape)), tf.nn.softplus( tf.Variable( np.sqrt(self.std_llib) * tf.ones(l_test.shape)))), bijector=tf.contrib.distributions.bijectors.Exp()) if self.zero_inflation: inference_local = ed.ReparameterizationKLqp( { z_test: qz_test, lam_test: qlam_test, l_test: ql_test }, data={ likelihood_test: tf.cast(X, tf.float32), self.W0: self.est_qW0, self.W1: self.est_qW1, self.r: self.est_qr }) else: inference_local = ed.ReparameterizationKLqp( { z_test: qz_test, lam_test: qlam_test, l_test: ql_test }, data={ likelihood_test: tf.cast(X, tf.float32), self.W0: self.est_qW0, self.r: self.est_qr }) inference_local.run(n_iter=self.test_iterations, n_samples=self.n_mc_samples) return -self.sess.run(inference_local.loss, feed_dict={likelihood_test: X.astype('float32') }) / N
def _test(alpha, beta, n): x = Gamma(alpha=alpha, beta=beta) val_est = get_dims(x.sample(n)) val_true = n + get_dims(alpha) assert val_est == val_true
We build a random variable whose size depends on a sample from another random variable. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import edward as ed import tensorflow as tf from edward.models import Exponential, Dirichlet, Gamma ed.set_seed(42) # Prior on scalar hyperparameter to Dirichlet. alpha = Gamma(alpha=1.0, beta=1.0) # Prior on size of Dirichlet. n = 1 + tf.cast(Exponential(lam=0.5), tf.int32) # Build a vector of ones whose size is n; multiply it by alpha. p = Dirichlet(alpha=tf.ones([n]) * alpha) sess = ed.get_session() print(sess.run(p.value())) # [ 0.01012419 0.02939712 0.05036638 0.51287931 0.31020424 0.0485355 # 0.0384932 ] print(sess.run(p.value())) # [ 0.12836078 0.23335715 0.63828212]
word_idx = np.logical_and( np.sum(x_train != 0, 1) >= 2, np.sum(x_train, 1) >= 10) words = [word for word, idx in zip(words, word_idx) if idx] x_train = x_train[word_idx, :] x_train = x_train.T N = x_train.shape[0] # number of documents D = x_train.shape[1] # vocabulary size K = [100, 30, 15] # number of components per layer q = 'lognormal' # choice of q; 'lognormal' or 'gamma' shape = 0.1 # gamma shape parameter lr = 1e-4 # learning rate step-size # MODEL W2 = Gamma(0.1, 0.3, sample_shape=[K[2], K[1]]) W1 = Gamma(0.1, 0.3, sample_shape=[K[1], K[0]]) W0 = Gamma(0.1, 0.3, sample_shape=[K[0], D]) z3 = Gamma(0.1, 0.1, sample_shape=[N, K[2]]) z2 = Gamma(shape, shape / tf.matmul(z3, W2)) z1 = Gamma(shape, shape / tf.matmul(z2, W1)) x = Poisson(tf.matmul(z1, W0)) # INFERENCE def pointmass_q(shape): min_mean = 1e-3 mean_init = tf.random_normal(shape) rv = PointMass(tf.maximum(tf.nn.softplus(tf.Variable(mean_init)), min_mean))
# ips_weights = 1. / poisson.pmf(cau.todense(), reconstr_cau_train) ips_weights = 1. / 0.25**np.array(4 - train_data.todense()) # ips_weights = ips_weights / np.sum(ips_weights) * np.sum(cau.todense()) # ips different end tf.reset_default_graph() sess = tf.InteractiveSession() idx_ph = tf.placeholder(tf.int32, M) cau_ph = tf.placeholder(tf.float32, [M, N]) sd_ph = tf.placeholder(tf.float32, [M, N]) U = Gamma(0.3 * tf.ones([M, K]), 0.3 * tf.ones([M, K])) V = Gamma(0.3 * tf.ones([N, K]), 0.3 * tf.ones([N, K])) x = Poisson(tf.matmul(U, V, transpose_b=True)) qU_variables = [tf.Variable(tf.random_uniform([D, K])), \ tf.Variable(tf.random_uniform([D, K]))] qU = PointMass( params=tf.nn.softplus(tf.gather(qU_variables[0], idx_ph))) qV_variables = [tf.Variable(tf.random_uniform([N, K])), \ tf.Variable(tf.random_uniform([N, K]))] qV = PointMass(params=tf.nn.softplus(qV_variables[0]))
# In[21]: K = 175 train_data = np.array(x_train, dtype=int) N = train_data.shape[0] D = train_data.shape[1] tf.reset_default_graph() sess = tf.InteractiveSession() idx_ph = tf.placeholder(tf.int32, M) x_ph = tf.placeholder(tf.float32, [M, D]) U = Gamma(0.1, 0.5, sample_shape=[M, K]) V = Gamma(0.1, 0.3, sample_shape=[D, K]) x = Poisson(tf.matmul(U, V, transpose_b=True)) min_scale = 1e-5 qV_variables = [ tf.Variable(tf.random_uniform([D, K])), tf.Variable(tf.random_uniform([D, K])) ] qV = TransformedDistribution( distribution=Normal(qV_variables[0],\ tf.maximum(tf.nn.softplus(qV_variables[1]), \ min_scale)), bijector=tf.contrib.distributions.bijectors.Exp())
# ips_weights = 1. / poisson.pmf(cau.todense(), reconstr_cau) ips_weights = 1. / 0.25**np.array(4 - train_data.todense()) # ips_weights = ips_weights / np.sum(ips_weights) * np.sum(cau.todense()) # ips different end tf.reset_default_graph() sess = tf.InteractiveSession() idx_ph = tf.placeholder(tf.int32, M) cau_ph = tf.placeholder(tf.float32, [M, N]) sd_ph = tf.placeholder(tf.float32, [M, N]) U = Gamma(0.3 * tf.ones([M, K]), 0.3 * tf.ones([M, K])) V = Gamma(0.3 * tf.ones([N, K]), 0.3 * tf.ones([N, K])) x = Poisson(tf.matmul(U, V, transpose_b=True)) qU_variables = [tf.Variable(tf.random_uniform([D, K])), \ tf.Variable(tf.random_uniform([D, K]))] qU = PointMass( params=tf.nn.softplus(tf.gather(qU_variables[0], idx_ph))) qV_variables = [tf.Variable(tf.random_uniform([N, K])), \ tf.Variable(tf.random_uniform([N, K]))] qV = PointMass(params=tf.nn.softplus(qV_variables[0]))
plt.plot(xn, 'go') plt.title('Simulated dataset') plt.show() print('mu=7') print('sigma=1') # Priors definition m = tf.constant([0.]) beta = tf.constant([0.0001]) a = tf.constant([0.001]) b = tf.constant([0.001]) # Posterior inference # Probabilistic model mu = Normal(loc=m, scale=beta) sigma = Gamma(a, b) x = Normal(loc=tf.tile(mu, [N]), scale=tf.tile(sigma, [N])) # Variational model qmu = Normal(loc=tf.Variable(tf.random_normal([1])), scale=tf.nn.softplus(tf.Variable(tf.random_normal([1])))) qsigma = Gamma(tf.nn.softplus(tf.Variable(tf.random_normal([1]))), tf.nn.softplus(tf.Variable(tf.random_normal([1])))) # Inference inference = ed.KLqp({mu: qmu, sigma: qsigma}, data={x: xn}) inference.run(n_iter=1500, n_samples=30) sess = ed.get_session() print('Inferred mu={}'.format(sess.run(qmu.mean())))
We build a random variable whose size depends on a sample from another random variable. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import edward as ed import tensorflow as tf from edward.models import Exponential, Dirichlet, Gamma ed.set_seed(42) # Prior on scalar hyperparameter to Dirichlet. alpha = Gamma(1.0, 1.0) # Prior on size of Dirichlet. n = 1 + tf.cast(Exponential(0.5), tf.int32) # Build a vector of ones whose size is n; multiply it by alpha. p = Dirichlet(tf.ones([n]) * alpha) sess = ed.get_session() print(sess.run(p)) # [ 0.01012419 0.02939712 0.05036638 0.51287931 0.31020424 0.0485355 # 0.0384932 ] print(sess.run(p)) # [ 0.12836078 0.23335715 0.63828212]
from edward.models import Dirichlet, Categorical, Gamma # debugging import sys sys.path.append("/home/victor/Documents/community_detection/Variational") from sbm import SBM # SBM parameters n_vert = 100 n_comm = 3 # fake a dataset # sort the ground truth community identities to make it easy to parse them z_gt = tf.Variable(tf.nn.top_k(Categorical(p=tf.ones([n_vert, n_comm])/n_comm).sample(),k=n_vert).values) eta_gt = tf.Variable(Gamma(tf.ones([n_comm, n_comm]), tf.ones([n_comm, n_comm])).sample()) g=SBM(zs = z_gt, eta = eta_gt, n_comm = n_comm) data = SBM(zs = z_gt, eta = eta_gt, n_comm = n_comm).sample() with tf.Session() as sess: init = tf.global_variables_initializer() init.run() dataset = data.eval() z_gt = z_gt.eval() eta_gt = eta_gt.eval() # Model # higher level parameters # alpha = tf.Variable(3.0,dtype=tf.float32) # lam = tf.Variable(1,dtype=tf.float32)
def _build_model_and_approximations(self): """ Form likelihood and approximating distributions of Ouija """ N = self.N G = self.G Q = self.Q ds = tf.contrib.distributions k = Normal(loc = tf.zeros([G,Q]), scale = 50 * tf.ones([G,Q]), name = "k") t0 = Normal(loc = 0.5 * tf.ones(G), scale = 1 * tf.ones(G)) mu0 = Gamma(concentration = 2 * tf.ones(G), rate = tf.ones(G)) z = Normal(loc = 0.5 * tf.ones([N,Q]), scale = tf.ones([N,Q])) phi = Gamma(concentration = 2 * tf.ones(1), rate = tf.ones(1)) pbeta = Normal(loc = tf.zeros(2), scale = tf.ones(2)) cell_mat = tf.stack([tf.reshape(z, [-1]), -tf.ones(N)], 1) gene_mat = tf.stack([tf.reshape(k, [-1]), tf.reshape(k, [-1]) * tf.reshape(t0, [-1])], 1) factor_mult = tf.matmul(cell_mat, gene_mat, transpose_b = True) mu = mu0 * tf.nn.sigmoid(factor_mult) prob_dropout = pbeta[0] + pbeta[1] * mu Y = DropoutNormal(p_dropout = prob_dropout, loc = mu, scale = tf.sqrt(1 + phi * mu)) Y._p_dropout = prob_dropout self.qk = Normal(loc = tf.Variable(tf.zeros([G, Q])), scale = tf.nn.softplus(tf.Variable(tf.zeros([G, Q])))) self.qz = ed.models.TransformedDistribution( distribution = ed.models.NormalWithSoftplusScale(loc = tf.Variable(tf.zeros([N,Q])), scale = tf.Variable(tf.ones([N,Q]))), bijector = LogitShiftBijector(a = tf.zeros([N,Q]), b = tf.ones([N,Q])), name = "qz" ) self.qmu0 = ed.models.TransformedDistribution( distribution = ed.models.NormalWithSoftplusScale(loc = tf.Variable(tf.zeros(G)), scale = tf.Variable(tf.ones(G))), bijector = ds.bijectors.Exp(), name = "qmu0" ) self.qphi = ed.models.TransformedDistribution( distribution = ed.models.NormalWithSoftplusScale(loc = tf.Variable(tf.zeros(1)), scale = tf.Variable(tf.ones(1))), bijector = ds.bijectors.Exp(), name = "qphi" ) self.qt0 = ed.models.TransformedDistribution( distribution = ed.models.NormalWithSoftplusScale(loc = tf.Variable(tf.zeros(G)), scale = tf.Variable(tf.ones(G))), bijector = LogitShiftBijector(a = tf.zeros(G), b = tf.ones(G)), name = "qt0" ) self.qbeta = Normal(loc = tf.Variable(tf.zeros(2)), scale = tf.nn.softplus(tf.Variable(tf.ones(2)))) approx_dict = { k: self.qk, z: self.qz, mu0: self.qmu0, phi: self.qphi, t0: self.qt0, pbeta: self.qbeta } return approx_dict, Y
def main(_): ed.set_seed(42) # DATA x_train, metadata = nips(FLAGS.data_dir) documents = metadata['columns'] words = metadata['rows'] # Subset to documents in 2011 and words appearing in at least two # documents and have a total word count of at least 10. doc_idx = [ i for i, document in enumerate(documents) if document.startswith('2011') ] documents = [documents[doc] for doc in doc_idx] x_train = x_train[:, doc_idx] word_idx = np.logical_and( np.sum(x_train != 0, 1) >= 2, np.sum(x_train, 1) >= 10) words = [word for word, idx in zip(words, word_idx) if idx] x_train = x_train[word_idx, :] x_train = x_train.T N = x_train.shape[0] # number of documents D = x_train.shape[1] # vocabulary size # MODEL W2 = Gamma(0.1, 0.3, sample_shape=[FLAGS.K[2], FLAGS.K[1]]) W1 = Gamma(0.1, 0.3, sample_shape=[FLAGS.K[1], FLAGS.K[0]]) W0 = Gamma(0.1, 0.3, sample_shape=[FLAGS.K[0], D]) z3 = Gamma(0.1, 0.1, sample_shape=[N, FLAGS.K[2]]) z2 = Gamma(FLAGS.shape, FLAGS.shape / tf.matmul(z3, W2)) z1 = Gamma(FLAGS.shape, FLAGS.shape / tf.matmul(z2, W1)) x = Poisson(tf.matmul(z1, W0)) # INFERENCE qW2 = pointmass_q(W2.shape) qW1 = pointmass_q(W1.shape) qW0 = pointmass_q(W0.shape) if FLAGS.q == 'gamma': qz3 = gamma_q(z3.shape) qz2 = gamma_q(z2.shape) qz1 = gamma_q(z1.shape) else: qz3 = lognormal_q(z3.shape) qz2 = lognormal_q(z2.shape) qz1 = lognormal_q(z1.shape) # We apply variational EM with E-step over local variables # and M-step to point estimate the global weight matrices. inference_e = ed.KLqp({ z1: qz1, z2: qz2, z3: qz3 }, data={ x: x_train, W0: qW0, W1: qW1, W2: qW2 }) inference_m = ed.MAP({ W0: qW0, W1: qW1, W2: qW2 }, data={ x: x_train, z1: qz1, z2: qz2, z3: qz3 }) optimizer_e = tf.train.RMSPropOptimizer(FLAGS.lr) optimizer_m = tf.train.RMSPropOptimizer(FLAGS.lr) kwargs = { 'optimizer': optimizer_e, 'n_print': 100, 'logdir': FLAGS.logdir, 'log_timestamp': False } if FLAGS.q == 'gamma': kwargs['n_samples'] = 30 inference_e.initialize(**kwargs) inference_m.initialize(optimizer=optimizer_m) sess = ed.get_session() tf.global_variables_initializer().run() n_epoch = 20 n_iter_per_epoch = 10000 for epoch in range(n_epoch): print("Epoch {}".format(epoch)) nll = 0.0 pbar = Progbar(n_iter_per_epoch) for t in range(1, n_iter_per_epoch + 1): pbar.update(t) info_dict_e = inference_e.update() info_dict_m = inference_m.update() nll += info_dict_e['loss'] # Compute perplexity averaged over a number of training iterations. # The model's negative log-likelihood of data is upper bounded by # the variational objective. nll /= n_iter_per_epoch perplexity = np.exp(nll / np.sum(x_train)) print("Negative log-likelihood <= {:0.3f}".format(nll)) print("Perplexity <= {:0.3f}".format(perplexity)) # Print top 10 words for first 10 topics. qW0_vals = sess.run(qW0) for k in range(10): top_words_idx = qW0_vals[k, :].argsort()[-10:][::-1] top_words = " ".join([words[i] for i in top_words_idx]) print("Topic {}: {}".format(k, top_words))
def multivariate_bayesian_linear_mixed_model_and_factorization(): ########### # Load/Simulate in data ############ num_genes = 5000 num_individuals = 100 cells_per_individual = 100 K = 3 num_samples = num_individuals*cells_per_individual print('start loading') Y_train, Z_train, true_random_effects, true_gene_random_effects_sdevs, true_gene_residual_sdevs, U_true, V_true, gene_mean = generate_multivariate_bayesian_linear_mixed_model_and_factorization_data(num_genes, num_individuals, cells_per_individual, K) print('data loaded') ############################### ## MODEL # Y ~ 1 + (1|individual) ############################### # Set up placeholders for the data inputs. ind_ph = tf.placeholder(tf.int32, [num_samples, 1]) # Set up fixed effects. mu = tf.get_variable("mu", [num_genes]) sigma_ind = tf.sqrt(tf.exp(tf.get_variable("sigma_ind", [num_genes]))) sigma_resid = tf.sqrt(tf.exp(tf.get_variable("sigma_resid", [num_genes]))) # Set up random effects eta_ind = Normal(loc=tf.zeros([num_individuals, num_genes]), scale= tf.matmul(tf.ones([num_individuals,num_genes]),tf.matrix_diag(sigma_ind))) # Set up factors #U = Normal(loc=0.0, scale=1, sample_shape=[num_samples, K]) #V = Normal(loc=0.0, scale=1.0, sample_shape=[K, num_genes]) #U = tf.exp(tf.get_variable("U", [num_samples, K])) # higher values of sparsity parameter result in a more sparse solution sparsity_parameter = 1.0 U = Gamma(concentration=1.0, rate=sparsity_parameter, sample_shape=[num_samples,K]) V = tf.get_variable("V", [K, num_genes]) yhat = (tf.matmul(U, V) + tf.gather_nd(eta_ind, ind_ph) + tf.matmul(tf.ones([num_samples, num_genes]), tf.matrix_diag(mu))) y = Normal(loc=yhat, scale=tf.matmul(tf.ones([num_samples, num_genes]), tf.matrix_diag(sigma_resid))) ############################### ## Inference set up ############################### q_ind_s = Normal( loc=tf.get_variable("q_ind_s/loc", [num_individuals, num_genes]), scale=tf.nn.softplus(tf.get_variable("q_ind_s/scale", [num_individuals, num_genes]))) qU = lognormal_q(U.shape) #qU = Normal(loc=tf.get_variable("qU/loc", [num_samples, K]), # scale=tf.nn.softplus( # tf.get_variable("qU/scale", [num_samples, K]))) #qV = Normal(loc=tf.get_variable("qV/loc", [K, num_genes]), # scale=tf.nn.softplus( # tf.get_variable("qV/scale", [K, num_genes]))) latent_vars = { U: qU, eta_ind: q_ind_s} data = { y: Y_train, ind_ph: Z_train} inference = ed.KLqp(latent_vars, data) tf.global_variables_initializer().run() inference.run(n_iter=500) # qU.distribution.scale.eval() pdb.set_trace()
print("K0", dim, "K", K) D = train_data.shape[0] N = train_data.shape[1] weights = train_data * alpha cau = exp_to_imp(train_data) tf.reset_default_graph() sess = tf.InteractiveSession() idx_ph = tf.placeholder(tf.int32, M) cau_ph = tf.placeholder(tf.float32, [M, N]) sd_ph = tf.placeholder(tf.float32, [M, N]) reconstr_cau_ph = tf.placeholder(tf.float32, [M, N]) U = Gamma(0.3 * tf.ones([M, K]), 0.3 * tf.ones([M, K])) V = Gamma(0.3 * tf.ones([N, K]), 0.3 * tf.ones([N, K])) gamma = Gamma(tf.ones([M, 1]), tf.ones([M, 1])) beta0 = Gamma(0.3 * tf.ones([1, 1]), 0.3 * tf.ones([1, 1])) x = Poisson(tf.add(tf.matmul(U, V, transpose_b=True),\ tf.multiply(tf.matmul(gamma, tf.ones([1, N])), \ reconstr_cau_ph)) + beta0) qU_variables = [tf.Variable(tf.random_uniform([D, K])), \ tf.Variable(tf.random_uniform([D, K]))] qU = PointMass( params=tf.nn.softplus(tf.gather(qU_variables[0], idx_ph)))