예제 #1
0
        def _parse(result: List) -> List:
            _, seconds_in_interval, _ = get_time_diff(filter.interval,
                                                      filter.date_from,
                                                      filter.date_to,
                                                      team_id=team_id)
            time_range = enumerate_time_range(filter, seconds_in_interval)
            filter_params = filter.to_params()
            extra_params = {
                "entity_id": entity.id,
                "entity_type": entity.type,
                "entity_math": entity.math
            }
            parsed_params: Dict[str, str] = encode_get_request_params({
                **filter_params,
                **extra_params
            })

            return [{
                "aggregated_value":
                result[0][0] if result and len(result) else 0,
                "days":
                time_range,
                "filter":
                filter_params,
                "persons": {
                    "filter":
                    extra_params,
                    "url":
                    f"api/projects/{team_id}/actions/people/?{urllib.parse.urlencode(parsed_params)}",
                },
            }]
예제 #2
0
    def _total_volume_query(self, entity: Entity, filter: Filter, team_id: int) -> Tuple[str, Dict, Callable]:

        interval_annotation = get_trunc_func_ch(filter.interval)
        num_intervals, seconds_in_interval, _ = get_time_diff(
            filter.interval or "day", filter.date_from, filter.date_to, team_id=team_id
        )
        aggregate_operation, join_condition, math_params = process_math(entity)

        trend_event_query = TrendsEventQuery(
            filter=filter,
            entity=entity,
            team_id=team_id,
            should_join_distinct_ids=True
            if join_condition != "" or entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE]
            else False,
        )
        event_query, event_query_params = trend_event_query.get_query()

        content_sql_params = {
            "aggregate_operation": aggregate_operation,
            "timestamp": "e.timestamp",
            "interval": interval_annotation,
        }
        params: Dict = {"team_id": team_id}
        params = {**params, **math_params, **event_query_params}

        if filter.display in TRENDS_DISPLAY_BY_VALUE:
            content_sql = VOLUME_TOTAL_AGGREGATE_SQL.format(event_query=event_query, **content_sql_params)
            time_range = enumerate_time_range(filter, seconds_in_interval)

            return (
                content_sql,
                params,
                lambda result: [
                    {"aggregated_value": result[0][0] if result and len(result) else 0, "days": time_range}
                ],
            )
        else:

            if entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE]:
                content_sql = ACTIVE_USER_SQL.format(
                    event_query=event_query,
                    **content_sql_params,
                    parsed_date_to=trend_event_query.parsed_date_to,
                    parsed_date_from=trend_event_query.parsed_date_from,
                    **trend_event_query.active_user_params
                )
            else:
                content_sql = VOLUME_SQL.format(event_query=event_query, **content_sql_params)

            null_sql = NULL_SQL.format(
                interval=interval_annotation,
                seconds_in_interval=seconds_in_interval,
                num_intervals=num_intervals,
                date_to=filter.date_to.strftime("%Y-%m-%d %H:%M:%S"),
            )
            final_query = AGGREGATE_SQL.format(null_sql=null_sql, content_sql=content_sql)
            return final_query, params, self._parse_total_volume_result(filter)
예제 #3
0
    def get_query(self) -> Tuple[str, Dict, Callable]:
        interval_annotation = get_trunc_func_ch(self.filter.interval)
        num_intervals, seconds_in_interval, round_interval = get_time_diff(
            self.filter.interval, self.filter.date_from, self.filter.date_to,
            self.team_id)
        _, parsed_date_to, date_params = parse_timestamps(filter=self.filter,
                                                          team_id=self.team_id)

        props_to_filter = self.filter.property_groups.combine_property_group(
            PropertyOperatorType.AND, self.entity.property_groups)

        outer_properties = self.column_optimizer.property_optimizer.parse_property_groups(
            props_to_filter).outer
        prop_filters, prop_filter_params = parse_prop_grouped_clauses(
            team_id=self.team_id,
            property_group=outer_properties,
            table_name="e",
            person_properties_mode=PersonPropertiesMode.
            USING_PERSON_PROPERTIES_COLUMN,
        )
        aggregate_operation, _, math_params = process_math(self.entity)

        action_query = ""
        action_params: Dict = {}
        if self.entity.type == TREND_FILTER_TYPE_ACTIONS:
            action = self.entity.get_action()
            action_query, action_params = format_action_filter(
                team_id=self.team_id, action=action, table_name="e")

        self.params = {
            **self.params,
            **math_params,
            **prop_filter_params,
            **action_params,
            "event": self.entity.id,
            "key": self.filter.breakdown,
            **date_params,
        }

        breakdown_filter_params = {
            "parsed_date_from":
            date_from_clause(interval_annotation, round_interval),
            "parsed_date_to":
            parsed_date_to,
            "actions_query":
            "AND {}".format(action_query) if action_query else "",
            "event_filter":
            "AND event = %(event)s" if not action_query else "",
            "filters":
            prop_filters if props_to_filter.values else "",
        }

        _params, _breakdown_filter_params = {}, {}

        if self.filter.breakdown_type == "cohort":
            _params, breakdown_filter, _breakdown_filter_params, breakdown_value = self._breakdown_cohort_params(
            )
        else:
            _params, breakdown_filter, _breakdown_filter_params, breakdown_value = self._breakdown_prop_params(
                "count(*)"
                if self.entity.math == "dau" else aggregate_operation,
                math_params,
            )

        if len(_params["values"]) == 0:
            # If there are no breakdown values, we are sure that there's no relevant events, so instead of adjusting
            # a "real" SELECT for this, we only include the below dummy SELECT.
            # It's a drop-in replacement for a "real" one, simply always returning 0 rows.
            # See https://github.com/PostHog/posthog/pull/5674 for context.
            return (
                "SELECT [now()] AS date, [0] AS data, '' AS breakdown_value LIMIT 0",
                {},
                lambda _: [],
            )

        person_join_condition, person_join_params = self._person_join_condition(
        )
        groups_join_condition, groups_join_params = GroupsJoinQuery(
            self.filter, self.team_id, self.column_optimizer).get_join_query()
        self.params = {
            **self.params,
            **_params,
            **person_join_params,
            **groups_join_params
        }
        breakdown_filter_params = {
            **breakdown_filter_params,
            **_breakdown_filter_params
        }

        if self.filter.display in TRENDS_DISPLAY_BY_VALUE:
            breakdown_filter = breakdown_filter.format(
                **breakdown_filter_params)
            content_sql = BREAKDOWN_AGGREGATE_QUERY_SQL.format(
                breakdown_filter=breakdown_filter,
                person_join=person_join_condition,
                groups_join=groups_join_condition,
                aggregate_operation=aggregate_operation,
                breakdown_value=breakdown_value,
            )
            time_range = enumerate_time_range(self.filter, seconds_in_interval)

            return (
                content_sql,
                self.params,
                self._parse_single_aggregate_result(self.filter, self.entity,
                                                    {"days": time_range}),
            )

        else:

            breakdown_filter = breakdown_filter.format(
                **breakdown_filter_params)

            if self.entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE]:
                active_user_params = get_active_user_params(
                    self.filter, self.entity, self.team_id)
                conditions = BREAKDOWN_ACTIVE_USER_CONDITIONS_SQL.format(
                    **breakdown_filter_params, **active_user_params)
                inner_sql = BREAKDOWN_ACTIVE_USER_INNER_SQL.format(
                    breakdown_filter=breakdown_filter,
                    person_join=person_join_condition,
                    groups_join=groups_join_condition,
                    aggregate_operation=aggregate_operation,
                    interval_annotation=interval_annotation,
                    breakdown_value=breakdown_value,
                    conditions=conditions,
                    GET_TEAM_PERSON_DISTINCT_IDS=get_team_distinct_ids_query(
                        self.team_id),
                    **active_user_params,
                    **breakdown_filter_params,
                )
            elif self.filter.display == TRENDS_CUMULATIVE and self.entity.math == "dau":
                inner_sql = BREAKDOWN_CUMULATIVE_INNER_SQL.format(
                    breakdown_filter=breakdown_filter,
                    person_join=person_join_condition,
                    groups_join=groups_join_condition,
                    aggregate_operation=aggregate_operation,
                    interval_annotation=interval_annotation,
                    breakdown_value=breakdown_value,
                    **breakdown_filter_params,
                )
            else:
                inner_sql = BREAKDOWN_INNER_SQL.format(
                    breakdown_filter=breakdown_filter,
                    person_join=person_join_condition,
                    groups_join=groups_join_condition,
                    aggregate_operation=aggregate_operation,
                    interval_annotation=interval_annotation,
                    breakdown_value=breakdown_value,
                )

            breakdown_query = BREAKDOWN_QUERY_SQL.format(
                interval=interval_annotation,
                num_intervals=num_intervals,
                inner_sql=inner_sql,
            )
            self.params.update({
                "seconds_in_interval": seconds_in_interval,
                "num_intervals": num_intervals,
            })

            return breakdown_query, self.params, self._parse_trend_result(
                self.filter, self.entity)
예제 #4
0
    def _format_breakdown_query(self, entity: Entity, filter: Filter,
                                team_id: int) -> Tuple[str, Dict, Callable]:
        # process params
        params: Dict[str, Any] = {"team_id": team_id}
        interval_annotation = get_trunc_func_ch(filter.interval)
        num_intervals, seconds_in_interval, round_interval = get_time_diff(
            filter.interval or "day", filter.date_from, filter.date_to,
            team_id)
        _, parsed_date_to, date_params = parse_timestamps(filter=filter,
                                                          team_id=team_id)

        props_to_filter = [*filter.properties, *entity.properties]
        prop_filters, prop_filter_params = parse_prop_clauses(
            props_to_filter,
            team_id,
            table_name="e",
            filter_test_accounts=filter.filter_test_accounts)
        aggregate_operation, _, math_params = process_math(entity)

        if entity.math == "dau" or filter.breakdown_type == "person":
            join_condition = EVENT_JOIN_PERSON_SQL
        else:
            join_condition = ""

        action_query = ""
        action_params: Dict = {}
        if entity.type == TREND_FILTER_TYPE_ACTIONS:
            action = entity.get_action()
            action_query, action_params = format_action_filter(action,
                                                               table_name="e")

        params = {
            **params,
            **math_params,
            **prop_filter_params,
            **action_params,
            "event": entity.id,
            "key": filter.breakdown,
            **date_params,
        }

        breakdown_filter_params = {
            "parsed_date_from":
            date_from_clause(interval_annotation, round_interval),
            "parsed_date_to":
            parsed_date_to,
            "actions_query":
            "AND {}".format(action_query) if action_query else "",
            "event_filter":
            "AND event = %(event)s" if not action_query else "",
            "filters":
            prop_filters if props_to_filter else "",
        }

        _params, _breakdown_filter_params = {}, {}

        if filter.breakdown_type == "cohort":
            _params, breakdown_filter, _breakdown_filter_params, breakdown_value = self._breakdown_cohort_params(
                team_id, filter, entity)
        elif filter.breakdown_type == "person":
            (
                _params,
                breakdown_filter,
                _breakdown_filter_params,
                breakdown_value,
            ) = self._breakdown_person_params(
                "count(*)" if entity.math == "dau" else aggregate_operation,
                entity, filter, team_id)
        else:
            (
                _params,
                breakdown_filter,
                _breakdown_filter_params,
                breakdown_value,
            ) = self._breakdown_prop_params(
                "count(*)" if entity.math == "dau" else aggregate_operation,
                entity, filter, team_id)

        if len(_params["values"]) == 0:
            return "SELECT 1", {}, lambda _: []

        params = {**params, **_params}
        breakdown_filter_params = {
            **breakdown_filter_params,
            **_breakdown_filter_params
        }

        if filter.display in TRENDS_DISPLAY_BY_VALUE:
            breakdown_filter = breakdown_filter.format(
                **breakdown_filter_params)
            content_sql = BREAKDOWN_AGGREGATE_QUERY_SQL.format(
                breakdown_filter=breakdown_filter,
                event_join=join_condition,
                aggregate_operation=aggregate_operation,
                breakdown_value=breakdown_value,
            )
            time_range = enumerate_time_range(filter, seconds_in_interval)

            return content_sql, params, self._parse_single_aggregate_result(
                filter, entity, {"days": time_range})

        else:

            breakdown_filter = breakdown_filter.format(
                **breakdown_filter_params)

            if entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE]:
                active_user_params = get_active_user_params(
                    filter, entity, team_id)
                conditions = BREAKDOWN_ACTIVE_USER_CONDITIONS_SQL.format(
                    **breakdown_filter_params, **active_user_params)
                inner_sql = BREAKDOWN_ACTIVE_USER_INNER_SQL.format(
                    breakdown_filter=breakdown_filter,
                    event_join=join_condition,
                    aggregate_operation=aggregate_operation,
                    interval_annotation=interval_annotation,
                    breakdown_value=breakdown_value,
                    conditions=conditions,
                    GET_TEAM_PERSON_DISTINCT_IDS=GET_TEAM_PERSON_DISTINCT_IDS,
                    **active_user_params,
                    **breakdown_filter_params)
            else:
                inner_sql = BREAKDOWN_INNER_SQL.format(
                    breakdown_filter=breakdown_filter,
                    event_join=join_condition,
                    aggregate_operation=aggregate_operation,
                    interval_annotation=interval_annotation,
                    breakdown_value=breakdown_value,
                )

            breakdown_query = BREAKDOWN_QUERY_SQL.format(
                interval=interval_annotation,
                num_intervals=num_intervals,
                inner_sql=inner_sql,
            )
            params.update({
                "date_to":
                filter.date_to.strftime("%Y-%m-%d %H:%M:%S"),
                "seconds_in_interval":
                seconds_in_interval,
                "num_intervals":
                num_intervals,
            })

            return breakdown_query, params, self._parse_trend_result(
                filter, entity)