def _parse(result: List) -> List: _, seconds_in_interval, _ = get_time_diff(filter.interval, filter.date_from, filter.date_to, team_id=team_id) time_range = enumerate_time_range(filter, seconds_in_interval) filter_params = filter.to_params() extra_params = { "entity_id": entity.id, "entity_type": entity.type, "entity_math": entity.math } parsed_params: Dict[str, str] = encode_get_request_params({ **filter_params, **extra_params }) return [{ "aggregated_value": result[0][0] if result and len(result) else 0, "days": time_range, "filter": filter_params, "persons": { "filter": extra_params, "url": f"api/projects/{team_id}/actions/people/?{urllib.parse.urlencode(parsed_params)}", }, }]
def _total_volume_query(self, entity: Entity, filter: Filter, team_id: int) -> Tuple[str, Dict, Callable]: interval_annotation = get_trunc_func_ch(filter.interval) num_intervals, seconds_in_interval, _ = get_time_diff( filter.interval or "day", filter.date_from, filter.date_to, team_id=team_id ) aggregate_operation, join_condition, math_params = process_math(entity) trend_event_query = TrendsEventQuery( filter=filter, entity=entity, team_id=team_id, should_join_distinct_ids=True if join_condition != "" or entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE] else False, ) event_query, event_query_params = trend_event_query.get_query() content_sql_params = { "aggregate_operation": aggregate_operation, "timestamp": "e.timestamp", "interval": interval_annotation, } params: Dict = {"team_id": team_id} params = {**params, **math_params, **event_query_params} if filter.display in TRENDS_DISPLAY_BY_VALUE: content_sql = VOLUME_TOTAL_AGGREGATE_SQL.format(event_query=event_query, **content_sql_params) time_range = enumerate_time_range(filter, seconds_in_interval) return ( content_sql, params, lambda result: [ {"aggregated_value": result[0][0] if result and len(result) else 0, "days": time_range} ], ) else: if entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE]: content_sql = ACTIVE_USER_SQL.format( event_query=event_query, **content_sql_params, parsed_date_to=trend_event_query.parsed_date_to, parsed_date_from=trend_event_query.parsed_date_from, **trend_event_query.active_user_params ) else: content_sql = VOLUME_SQL.format(event_query=event_query, **content_sql_params) null_sql = NULL_SQL.format( interval=interval_annotation, seconds_in_interval=seconds_in_interval, num_intervals=num_intervals, date_to=filter.date_to.strftime("%Y-%m-%d %H:%M:%S"), ) final_query = AGGREGATE_SQL.format(null_sql=null_sql, content_sql=content_sql) return final_query, params, self._parse_total_volume_result(filter)
def get_query(self) -> Tuple[str, Dict, Callable]: interval_annotation = get_trunc_func_ch(self.filter.interval) num_intervals, seconds_in_interval, round_interval = get_time_diff( self.filter.interval, self.filter.date_from, self.filter.date_to, self.team_id) _, parsed_date_to, date_params = parse_timestamps(filter=self.filter, team_id=self.team_id) props_to_filter = self.filter.property_groups.combine_property_group( PropertyOperatorType.AND, self.entity.property_groups) outer_properties = self.column_optimizer.property_optimizer.parse_property_groups( props_to_filter).outer prop_filters, prop_filter_params = parse_prop_grouped_clauses( team_id=self.team_id, property_group=outer_properties, table_name="e", person_properties_mode=PersonPropertiesMode. USING_PERSON_PROPERTIES_COLUMN, ) aggregate_operation, _, math_params = process_math(self.entity) action_query = "" action_params: Dict = {} if self.entity.type == TREND_FILTER_TYPE_ACTIONS: action = self.entity.get_action() action_query, action_params = format_action_filter( team_id=self.team_id, action=action, table_name="e") self.params = { **self.params, **math_params, **prop_filter_params, **action_params, "event": self.entity.id, "key": self.filter.breakdown, **date_params, } breakdown_filter_params = { "parsed_date_from": date_from_clause(interval_annotation, round_interval), "parsed_date_to": parsed_date_to, "actions_query": "AND {}".format(action_query) if action_query else "", "event_filter": "AND event = %(event)s" if not action_query else "", "filters": prop_filters if props_to_filter.values else "", } _params, _breakdown_filter_params = {}, {} if self.filter.breakdown_type == "cohort": _params, breakdown_filter, _breakdown_filter_params, breakdown_value = self._breakdown_cohort_params( ) else: _params, breakdown_filter, _breakdown_filter_params, breakdown_value = self._breakdown_prop_params( "count(*)" if self.entity.math == "dau" else aggregate_operation, math_params, ) if len(_params["values"]) == 0: # If there are no breakdown values, we are sure that there's no relevant events, so instead of adjusting # a "real" SELECT for this, we only include the below dummy SELECT. # It's a drop-in replacement for a "real" one, simply always returning 0 rows. # See https://github.com/PostHog/posthog/pull/5674 for context. return ( "SELECT [now()] AS date, [0] AS data, '' AS breakdown_value LIMIT 0", {}, lambda _: [], ) person_join_condition, person_join_params = self._person_join_condition( ) groups_join_condition, groups_join_params = GroupsJoinQuery( self.filter, self.team_id, self.column_optimizer).get_join_query() self.params = { **self.params, **_params, **person_join_params, **groups_join_params } breakdown_filter_params = { **breakdown_filter_params, **_breakdown_filter_params } if self.filter.display in TRENDS_DISPLAY_BY_VALUE: breakdown_filter = breakdown_filter.format( **breakdown_filter_params) content_sql = BREAKDOWN_AGGREGATE_QUERY_SQL.format( breakdown_filter=breakdown_filter, person_join=person_join_condition, groups_join=groups_join_condition, aggregate_operation=aggregate_operation, breakdown_value=breakdown_value, ) time_range = enumerate_time_range(self.filter, seconds_in_interval) return ( content_sql, self.params, self._parse_single_aggregate_result(self.filter, self.entity, {"days": time_range}), ) else: breakdown_filter = breakdown_filter.format( **breakdown_filter_params) if self.entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE]: active_user_params = get_active_user_params( self.filter, self.entity, self.team_id) conditions = BREAKDOWN_ACTIVE_USER_CONDITIONS_SQL.format( **breakdown_filter_params, **active_user_params) inner_sql = BREAKDOWN_ACTIVE_USER_INNER_SQL.format( breakdown_filter=breakdown_filter, person_join=person_join_condition, groups_join=groups_join_condition, aggregate_operation=aggregate_operation, interval_annotation=interval_annotation, breakdown_value=breakdown_value, conditions=conditions, GET_TEAM_PERSON_DISTINCT_IDS=get_team_distinct_ids_query( self.team_id), **active_user_params, **breakdown_filter_params, ) elif self.filter.display == TRENDS_CUMULATIVE and self.entity.math == "dau": inner_sql = BREAKDOWN_CUMULATIVE_INNER_SQL.format( breakdown_filter=breakdown_filter, person_join=person_join_condition, groups_join=groups_join_condition, aggregate_operation=aggregate_operation, interval_annotation=interval_annotation, breakdown_value=breakdown_value, **breakdown_filter_params, ) else: inner_sql = BREAKDOWN_INNER_SQL.format( breakdown_filter=breakdown_filter, person_join=person_join_condition, groups_join=groups_join_condition, aggregate_operation=aggregate_operation, interval_annotation=interval_annotation, breakdown_value=breakdown_value, ) breakdown_query = BREAKDOWN_QUERY_SQL.format( interval=interval_annotation, num_intervals=num_intervals, inner_sql=inner_sql, ) self.params.update({ "seconds_in_interval": seconds_in_interval, "num_intervals": num_intervals, }) return breakdown_query, self.params, self._parse_trend_result( self.filter, self.entity)
def _format_breakdown_query(self, entity: Entity, filter: Filter, team_id: int) -> Tuple[str, Dict, Callable]: # process params params: Dict[str, Any] = {"team_id": team_id} interval_annotation = get_trunc_func_ch(filter.interval) num_intervals, seconds_in_interval, round_interval = get_time_diff( filter.interval or "day", filter.date_from, filter.date_to, team_id) _, parsed_date_to, date_params = parse_timestamps(filter=filter, team_id=team_id) props_to_filter = [*filter.properties, *entity.properties] prop_filters, prop_filter_params = parse_prop_clauses( props_to_filter, team_id, table_name="e", filter_test_accounts=filter.filter_test_accounts) aggregate_operation, _, math_params = process_math(entity) if entity.math == "dau" or filter.breakdown_type == "person": join_condition = EVENT_JOIN_PERSON_SQL else: join_condition = "" action_query = "" action_params: Dict = {} if entity.type == TREND_FILTER_TYPE_ACTIONS: action = entity.get_action() action_query, action_params = format_action_filter(action, table_name="e") params = { **params, **math_params, **prop_filter_params, **action_params, "event": entity.id, "key": filter.breakdown, **date_params, } breakdown_filter_params = { "parsed_date_from": date_from_clause(interval_annotation, round_interval), "parsed_date_to": parsed_date_to, "actions_query": "AND {}".format(action_query) if action_query else "", "event_filter": "AND event = %(event)s" if not action_query else "", "filters": prop_filters if props_to_filter else "", } _params, _breakdown_filter_params = {}, {} if filter.breakdown_type == "cohort": _params, breakdown_filter, _breakdown_filter_params, breakdown_value = self._breakdown_cohort_params( team_id, filter, entity) elif filter.breakdown_type == "person": ( _params, breakdown_filter, _breakdown_filter_params, breakdown_value, ) = self._breakdown_person_params( "count(*)" if entity.math == "dau" else aggregate_operation, entity, filter, team_id) else: ( _params, breakdown_filter, _breakdown_filter_params, breakdown_value, ) = self._breakdown_prop_params( "count(*)" if entity.math == "dau" else aggregate_operation, entity, filter, team_id) if len(_params["values"]) == 0: return "SELECT 1", {}, lambda _: [] params = {**params, **_params} breakdown_filter_params = { **breakdown_filter_params, **_breakdown_filter_params } if filter.display in TRENDS_DISPLAY_BY_VALUE: breakdown_filter = breakdown_filter.format( **breakdown_filter_params) content_sql = BREAKDOWN_AGGREGATE_QUERY_SQL.format( breakdown_filter=breakdown_filter, event_join=join_condition, aggregate_operation=aggregate_operation, breakdown_value=breakdown_value, ) time_range = enumerate_time_range(filter, seconds_in_interval) return content_sql, params, self._parse_single_aggregate_result( filter, entity, {"days": time_range}) else: breakdown_filter = breakdown_filter.format( **breakdown_filter_params) if entity.math in [WEEKLY_ACTIVE, MONTHLY_ACTIVE]: active_user_params = get_active_user_params( filter, entity, team_id) conditions = BREAKDOWN_ACTIVE_USER_CONDITIONS_SQL.format( **breakdown_filter_params, **active_user_params) inner_sql = BREAKDOWN_ACTIVE_USER_INNER_SQL.format( breakdown_filter=breakdown_filter, event_join=join_condition, aggregate_operation=aggregate_operation, interval_annotation=interval_annotation, breakdown_value=breakdown_value, conditions=conditions, GET_TEAM_PERSON_DISTINCT_IDS=GET_TEAM_PERSON_DISTINCT_IDS, **active_user_params, **breakdown_filter_params) else: inner_sql = BREAKDOWN_INNER_SQL.format( breakdown_filter=breakdown_filter, event_join=join_condition, aggregate_operation=aggregate_operation, interval_annotation=interval_annotation, breakdown_value=breakdown_value, ) breakdown_query = BREAKDOWN_QUERY_SQL.format( interval=interval_annotation, num_intervals=num_intervals, inner_sql=inner_sql, ) params.update({ "date_to": filter.date_to.strftime("%Y-%m-%d %H:%M:%S"), "seconds_in_interval": seconds_in_interval, "num_intervals": num_intervals, }) return breakdown_query, params, self._parse_trend_result( filter, entity)