예제 #1
0
def set_AF_date(feat): 
    return feat.set("af_date", ee.Date(feat.get("ACQ_DATE")).format().slice(0,19))
예제 #2
0
# count = fromFT.size().getInfo()
# print(count)
polys = fromFT.geometry()
centroid = polys.centroid()
lng, lat = centroid.getInfo()['coordinates']
# print("lng = {}, lat = {}".format(lng, lat))
values = fromFT.reduceColumns(ee.Reducer.toList(2),
                              ['system:index', 'name']).getInfo()['list']
# print(values)
# Map.setCenter(lng, lat, 10)
vis = {'bands': ['N', 'R', 'G']}

for year in years:
    # year = 2015

    startTime = ee.Date(str(year) + '-01-01')
    endTime = ee.Date(str(year) + '-12-31')
    # year = startTime.get('year').getInfo()
    # print(year)

    for (id, name) in values:
        watershed = fromFT.filter(ee.Filter.eq('system:index', str(id)))
        filename = "Y" + str(year) + "_" + str(id) + "_" + str(name).replace(
            " ", "_")
        print(filename)
        image = subsetNAIP(collection, startTime, endTime, watershed)
        ndwi = calNDWI(image, threshold)
        vector = rasterToVector(ndwi, watershed)
        exportToDrive(vector, filename)
        # Map.addLayer(image, vis)
        # Map.addLayer(vector)
예제 #3
0
def l8Correction(img):

    # tile geometry

    l8Footprint = img.geometry()

    # dem
    DEM_OLI = ee.Image('USGS/SRTMGL1_003').clip(l8Footprint)

    # ozone
    DU_OLI = ee.Image(
        ozone.filterDate(iniDate, endDate).filterBounds(l8Footprint).mean())

    # Julian Day
    imgDate_OLI = ee.Date(img.get('system:time_start'))
    FOY_OLI = ee.Date.fromYMD(imgDate_OLI.get('year'), 1, 1)
    JD_OLI = imgDate_OLI.difference(FOY_OLI, 'day').int().add(1)

    # Earth-Sun distance
    d_OLI = ee.Image.constant(img.get('EARTH_SUN_DISTANCE'))

    # Sun elevation
    SunEl_OLI = ee.Image.constant(img.get('SUN_ELEVATION'))

    # Sun azimuth
    SunAz_OLI = ee.Image.constant(img.get('SUN_AZIMUTH'))

    # Satellite zenith
    SatZe_OLI = ee.Image(0.0)
    cosdSatZe_OLI = (SatZe_OLI).multiply(pi.divide(ee.Image(180))).cos()
    sindSatZe_OLI = (SatZe_OLI).multiply(pi.divide(ee.Image(180))).sin()

    # Satellite azimuth
    SatAz_OLI = ee.Image(0.0).clip(l8Footprint)

    # Sun zenith
    SunZe_OLI = ee.Image(90).subtract(SunEl_OLI)
    cosdSunZe_OLI = SunZe_OLI.multiply(pi.divide(
        ee.Image.constant(180))).cos()  # in degrees
    sindSunZe_OLI = SunZe_OLI.multiply(pi.divide(
        ee.Image(180))).sin()  # in degrees

    # Relative azimuth
    RelAz_OLI = ee.Image(SunAz_OLI)
    cosdRelAz_OLI = RelAz_OLI.multiply(pi.divide(ee.Image(180))).cos()

    # Pressure calculation
    P_OLI = ee.Image(101325).multiply(
        ee.Image(1).subtract(ee.Image(0.0000225577).multiply(DEM_OLI)).pow(
            5.25588)).multiply(0.01)
    Po_OLI = ee.Image(1013.25)

    # Radiometric Calibration #
    # define bands to be converted to radiance
    bands_OLI = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7']

    # radiance_mult_bands
    rad_mult_OLI = ee.Image(
        ee.Array([
            ee.Image(img.get('RADIANCE_MULT_BAND_1')),
            ee.Image(img.get('RADIANCE_MULT_BAND_2')),
            ee.Image(img.get('RADIANCE_MULT_BAND_3')),
            ee.Image(img.get('RADIANCE_MULT_BAND_4')),
            ee.Image(img.get('RADIANCE_MULT_BAND_5')),
            ee.Image(img.get('RADIANCE_MULT_BAND_6')),
            ee.Image(img.get('RADIANCE_MULT_BAND_7'))
        ])).toArray(1)

    # radiance add band
    rad_add_OLI = ee.Image(
        ee.Array([
            ee.Image(img.get('RADIANCE_ADD_BAND_1')),
            ee.Image(img.get('RADIANCE_ADD_BAND_2')),
            ee.Image(img.get('RADIANCE_ADD_BAND_3')),
            ee.Image(img.get('RADIANCE_ADD_BAND_4')),
            ee.Image(img.get('RADIANCE_ADD_BAND_5')),
            ee.Image(img.get('RADIANCE_ADD_BAND_6')),
            ee.Image(img.get('RADIANCE_ADD_BAND_7'))
        ])).toArray(1)

    # create an empty image to save new radiance bands to
    imgArr_OLI = img.select(bands_OLI).toArray().toArray(1)
    Ltoa_OLI = imgArr_OLI.multiply(rad_mult_OLI).add(rad_add_OLI)

    # esun
    ESUN_OLI = ee.Image.constant(197.24790954589844)\
        .addBands(ee.Image.constant(201.98426818847656))\
        .addBands(ee.Image.constant(186.12677001953125))\
        .addBands(ee.Image.constant(156.95257568359375))\
        .addBands(ee.Image.constant(96.04714965820312))\
        .addBands(ee.Image.constant(23.8833221450863))\
        .addBands(ee.Image.constant(8.04995873449635)).toArray().toArray(1)
    ESUN_OLI = ESUN_OLI.multiply(ee.Image(1))

    ESUNImg_OLI = ESUN_OLI.arrayProject([0]).arrayFlatten([bands_OLI])

    # Ozone Correction #
    # Ozone coefficients
    koz_OLI = ee.Image.constant(0.0039).addBands(ee.Image.constant(0.0218))\
        .addBands(ee.Image.constant(0.1078))\
        .addBands(ee.Image.constant(0.0608))\
        .addBands(ee.Image.constant(0.0019))\
        .addBands(ee.Image.constant(0))\
        .addBands(ee.Image.constant(0))\
        .toArray().toArray(1)

    # Calculate ozone optical thickness
    Toz_OLI = koz_OLI.multiply(DU_OLI).divide(ee.Image.constant(1000))

    # Calculate TOA radiance in the absense of ozone
    Lt_OLI = Ltoa_OLI.multiply(((Toz_OLI)).multiply(
        (ee.Image.constant(1).divide(cosdSunZe_OLI)).add(
            ee.Image.constant(1).divide(cosdSatZe_OLI))).exp())

    # Rayleigh optical thickness
    bandCenter_OLI = ee.Image(443).divide(1000).addBands(ee.Image(483).divide(1000))\
        .addBands(ee.Image(561).divide(1000))\
        .addBands(ee.Image(655).divide(1000))\
        .addBands(ee.Image(865).divide(1000))\
        .addBands(ee.Image(1609).divide(1000))\
        .addBands(ee.Number(2201).divide(1000))\
        .toArray().toArray(1)

    # create an empty image to save new Tr values to
    Tr_OLI = (P_OLI.divide(Po_OLI)).multiply(
        ee.Image(0.008569).multiply(bandCenter_OLI.pow(-4))).multiply(
            (ee.Image(1).add(
                ee.Image(0.0113).multiply(bandCenter_OLI.pow(-2))).add(
                    ee.Image(0.00013).multiply(bandCenter_OLI.pow(-4)))))

    # Fresnel Reflection #
    # Specular reflection (s- and p- polarization states)
    theta_V_OLI = ee.Image(0.0000000001)
    sin_theta_j_OLI = sindSunZe_OLI.divide(ee.Image(1.333))

    theta_j_OLI = sin_theta_j_OLI.asin().multiply(ee.Image(180).divide(pi))

    theta_SZ_OLI = SunZe_OLI

    R_theta_SZ_s_OLI = (((theta_SZ_OLI.multiply(pi.divide(
        ee.Image(180)))).subtract(
            theta_j_OLI.multiply(pi.divide(
                ee.Image(180))))).sin().pow(2)).divide(
                    (((theta_SZ_OLI.multiply(pi.divide(ee.Image(180)))).add(
                        theta_j_OLI.multiply(pi.divide(
                            ee.Image(180))))).sin().pow(2)))

    R_theta_V_s_OLI = ee.Image(0.0000000001)

    R_theta_SZ_p_OLI = (((theta_SZ_OLI.multiply(pi.divide(180))).subtract(
        theta_j_OLI.multiply(pi.divide(180)))).tan().pow(2)).divide(
            (((theta_SZ_OLI.multiply(pi.divide(180))).add(
                theta_j_OLI.multiply(pi.divide(180)))).tan().pow(2)))

    R_theta_V_p_OLI = ee.Image(0.0000000001)

    R_theta_SZ_OLI = ee.Image(0.5).multiply(
        R_theta_SZ_s_OLI.add(R_theta_SZ_p_OLI))

    R_theta_V_OLI = ee.Image(0.5).multiply(
        R_theta_V_s_OLI.add(R_theta_V_p_OLI))

    # Rayleigh scattering phase function #
    # Sun-sensor geometry
    theta_neg_OLI = ((cosdSunZe_OLI.multiply(
        ee.Image(-1))).multiply(cosdSatZe_OLI)).subtract(
            (sindSunZe_OLI).multiply(sindSatZe_OLI).multiply(cosdRelAz_OLI))

    theta_neg_inv_OLI = theta_neg_OLI.acos().multiply(ee.Image(180).divide(pi))

    theta_pos_OLI = (cosdSunZe_OLI.multiply(cosdSatZe_OLI)).subtract(
        sindSunZe_OLI.multiply(sindSatZe_OLI).multiply(cosdRelAz_OLI))

    theta_pos_inv_OLI = theta_pos_OLI.acos().multiply(ee.Image(180).divide(pi))

    cosd_tni_OLI = theta_neg_inv_OLI.multiply(
        pi.divide(180)).cos()  # in degrees

    cosd_tpi_OLI = theta_pos_inv_OLI.multiply(
        pi.divide(180)).cos()  # in degrees

    Pr_neg_OLI = ee.Image(0.75).multiply(
        (ee.Image(1).add(cosd_tni_OLI.pow(2))))

    Pr_pos_OLI = ee.Image(0.75).multiply(
        (ee.Image(1).add(cosd_tpi_OLI.pow(2))))

    # Rayleigh scattering phase function
    Pr_OLI = Pr_neg_OLI.add(
        (R_theta_SZ_OLI.add(R_theta_V_OLI)).multiply(Pr_pos_OLI))

    # Calulate Lr,
    denom_OLI = ee.Image(4).multiply(pi).multiply(cosdSatZe_OLI)
    Lr_OLI = (ESUN_OLI.multiply(Tr_OLI)).multiply(Pr_OLI.divide(denom_OLI))

    # Rayleigh corrected radiance
    Lrc_OLI = (Lt_OLI.divide(ee.Image(10))).subtract(Lr_OLI)
    LrcImg_OLI = Lrc_OLI.arrayProject([0]).arrayFlatten([bands_OLI])

    # Rayleigh corrected reflectance
    prc_OLI = Lrc_OLI.multiply(pi).multiply(d_OLI.pow(2)).divide(
        ESUN_OLI.multiply(cosdSunZe_OLI))
    prcImg_OLI = prc_OLI.arrayProject([0]).arrayFlatten([bands_OLI])

    # Aerosol Correction #
    # Bands in nm
    bands_nm_OLI = ee.Image(443).addBands(ee.Image(483))\
        .addBands(ee.Image(561))\
        .addBands(ee.Image(655))\
        .addBands(ee.Image(865))\
        .addBands(ee.Image(0))\
        .addBands(ee.Image(0))\
        .toArray().toArray(1)

    # Lam in SWIR bands
    Lam_6_OLI = LrcImg_OLI.select('B6')
    Lam_7_OLI = LrcImg_OLI.select('B7')

    # Calculate aerosol type
    eps_OLI = (((((Lam_7_OLI).divide(
        ESUNImg_OLI.select('B7'))).log()).subtract(
            ((Lam_6_OLI).divide(ESUNImg_OLI.select('B6'))).log())).divide(
                ee.Image(2201).subtract(ee.Image(1609)))).multiply(mask)

    # Calculate multiple scattering of aerosols for each band
    Lam_OLI = (Lam_7_OLI).multiply(
        ((ESUN_OLI).divide(ESUNImg_OLI.select('B7')))).multiply(
            (eps_OLI.multiply(ee.Image(-1))).multiply(
                (bands_nm_OLI.divide(ee.Image(2201)))).exp())

    # diffuse transmittance
    trans_OLI = Tr_OLI.multiply(ee.Image(-1)).divide(ee.Image(2)).multiply(
        ee.Image(1).divide(cosdSatZe_OLI)).exp()

    # Compute water-leaving radiance
    Lw_OLI = Lrc_OLI.subtract(Lam_OLI).divide(trans_OLI)

    # water-leaving reflectance
    pw_OLI = (Lw_OLI.multiply(pi).multiply(d_OLI.pow(2)).divide(
        ESUN_OLI.multiply(cosdSunZe_OLI)))
    pwImg_OLI = pw_OLI.arrayProject([0]).arrayFlatten([bands_OLI])

    # Rrs
    Rrs_coll = (pw_OLI.divide(pi).arrayProject([0]).arrayFlatten(
        [bands_OLI]).slice(0, 5))

    return (Rrs_coll.set('system:time_start', img.get('system:time_start')))
예제 #4
0
def get_flood_PopbyCountryCIESEN(floodImage):
    """
    Args:
        floodImage : the standard Earth Engine Image object outputted by the map_DFO_event function
        roiGEO : the region of interest as an Earth Engine Geometry object

    Returns:
    -a feature collection of all countries for each flood events
    -with a pop and area count
        - An ee feature with properties including
              'Index': the event index ID
              'Began': start date of event map
              'Ended': end date of event map
              'Flood_Area': total area of detected flood
              'Pop_Exposed': the number of people in the mapped flood from WorldPop data
    """
    import ee
    ee.Initialize()

    roiGEO = floodImage.geometry()

    permWater = ee.Image("JRC/GSW1_0/GlobalSurfaceWater").select(
        "transition").eq(1)

    def maskImages(image):
        nonFlood = image.select("flooded")
        waterMask = nonFlood.multiply(permWater.neq(1))
        return image.select("flooded").mask(waterMask)

    # Extract the final flood extent image data as its own variable for analysis
    floodExtent = maskImages(ee.Image(floodImage.select("flooded")))

    # check to make sure there are actually flooded pixels, some images are only 0 and masked, which will make this function fail.
    # if there is not, then you just return a feature with 0 for pop and area effected.
    #  maxVal = floodExtent.reduceRegion(reducer=ee.Reducer.max(), maxPixels=1e9)

    # Import the World Pop image collection, clip it to the study area, and get the UN adjusted data
    popAll = ee.ImageCollection(
        "CIESIN/GPWv4/unwpp-adjusted-population-count").filterBounds(roiGEO)

    # get event year and available population years to figure out the population dataset closest to the event
    eventYear = ee.Date(floodImage.get('Began')).get('year')

    def year_diff(popImg):
        popYear = ee.Date(popImg.get('system:index')).get('year')
        diff = ee.Number(eventYear).subtract(ee.Number(popYear)).abs()
        return popImg.set({"year_diff": diff})

    withYearDiffs = popAll.map(year_diff).sort('year_diff')
    closestYear = withYearDiffs.first().get('system:index')

    popImg = ee.Image(
        popAll.filterMetadata('system:index', 'equals', closestYear).first())

    # Mask the world population dataset using the flood extent layer
    popScale = popImg.projection().nominalScale()
    popImageMasked = popImg.updateMask(floodExtent)

    #now only select the countries for which flood touches
    countries = ee.FeatureCollection(
        'ft:1tdSwUL7MVpOauSgRzqVTOwdfy17KDbw-1d9omPw')
    getcountries = countries.filterBounds(floodExtent.geometry().bounds())

    # Get area of flood in the scale of the flood map
    floodAreaImg = floodExtent.multiply(ee.Image.pixelArea())
    map_scale = floodExtent.projection().nominalScale()
    index = ee.Image(floodImage).get("Index")
    began = ee.Date(floodImage.get("Began")).get("year")

    def countrieswithpop(feature):
        popsum = popImageMasked.reduceRegion(reducer=ee.Reducer.sum(),
                                             geometry=feature.geometry(),
                                             scale=popScale,
                                             maxPixels=1e9)

        pop = popsum.get("population-count")

        areasum = floodAreaImg.reduceRegion(reducer=ee.Reducer.sum(),
                                            geometry=feature.geometry(),
                                            scale=map_scale,
                                            maxPixels=1e9)

        area = areasum.get("flooded")
        return ee.Feature(
            None, {
                "Index": index,
                "Year": began_year,
                "Country": feature.get("Country"),
                "Exposed": pop,
                "Area": area
            })

    stat = ee.FeatureCollection(getcountries).map(countrieswithpop)
    return ee.FeatureCollection(stat).set({"Index": index})
예제 #5
0
def get_flood_PopArea_WP(floodImage):
    """
    Function to compute the estimated affected population and area (in square meters) of a flood event
    given a computed flood image

    Args:
        floodImage : the standard Earth Engine Image object outputted by the map_DFO_event function
        roiGEO : the region of interest as an Earth Engine Geometry object

    Returns:
        - An ee feature with properties including
              'Index': the event index ID
              'Began': start date of event map
              'Ended': end date of event map
              'Flood_Area': total area of detected flood
              'Pop_Exposed': the number of people in the mapped flood from WorldPop data
    """
    import ee
    ee.Initialize()

    roiGEO = floodImage.geometry()

    # Extract the final flood extent image data as its own variable for analysis
    floodExtent = ee.Image(floodImage.select("flooded"))

    # check to make sure there are actually flooded pixels, some images are only 0 and masked, which will make this function fail.
    # if there is not, then you just return a feature with 0 for pop and area effected.
    #  maxVal = floodExtent.reduceRegion(reducer=ee.Reducer.max(), maxPixels=1e9)

    # Import the World Pop image collection, clip it to the study area, and get the UN adjusted data
    worldPopAll = ee.ImageCollection("WorldPop/POP").filterBounds(
        roiGEO).filterMetadata('UNadj', 'equals', 'yes')

    valid = ee.Algorithms.If(worldPopAll.first(), True, False)

    # get event year and available population years to figure out the population dataset closest to the event
    eventYear = ee.Date(floodImage.get('Began')).get('year')

    def year_diff(popImg):
        diff = ee.Number(eventYear).subtract(ee.Number(
            popImg.get('year'))).abs()
        return popImg.set({"year_diff": diff})

    withYearDiffs = worldPopAll.map(year_diff).sort('year_diff')
    closestYear = withYearDiffs.first().get('year')

    worldPop = worldPopAll.filterMetadata('year', 'equals',
                                          closestYear).mosaic()

    # Mask the world population dataset using the flood extent layer
    popImageColl = worldPop.updateMask(floodExtent)
    wpScale = ee.Image(worldPopAll.first()).projection().nominalScale()

    # Calculate the population affected and area maintain as a dictionary
    popAffected = popImageColl.reduceRegion(reducer=ee.Reducer.sum(),
                                            geometry=roiGEO,
                                            scale=wpScale,
                                            maxPixels=1e9,
                                            bestEffort=True)

    # Get area of flood in the scale of the flood map
    floodAreaImg = floodExtent.multiply(ee.Image.pixelArea())

    # map scale
    map_scale = floodExtent.projection().nominalScale()

    floodArea = floodAreaImg.reduceRegion(reducer=ee.Reducer.sum(),
                                          geometry=roiGEO,
                                          scale=map_scale,
                                          maxPixels=1e9,
                                          bestEffort=True)

    results = {
        'Area_flooded_(km2)': ee.Number(floodArea.get('flooded')).divide(1e6),
        'Pop_Exposed': ee.Number(popAffected.get('population')).round()
    }

    return ee.Feature(ee.Geometry.Point([100, 100]),
                      results).copyProperties(floodImage)
예제 #6
0
# %%
Map = folium.Map(location=[40, -100], zoom_start=4)
Map.setOptions('HYBRID')

# %%
'''
## Add Earth Engine Python script 

'''

# %%
collection = ee.ImageCollection('LANDSAT/LC08/C01/T1')

point = ee.Geometry.Point(-122.262, 37.8719)
start = ee.Date('2014-06-01')
finish = ee.Date('2014-10-01')

filteredCollection = ee.ImageCollection('LANDSAT/LC08/C01/T1') \
    .filterBounds(point) \
    .filterDate(start, finish) \
    .sort('CLOUD_COVER', True)

first = filteredCollection.first()
# Define visualization parameters in an object literal.
vizParams = {
    'bands': ['B5', 'B4', 'B3'],
    'min': 5000,
    'max': 15000,
    'gamma': 1.3
}
예제 #7
0
    def get(self):

        do_add_DOY_band = True  # ***PG Edit***
        do_add_nOBS_band = True  # ***PG Edit***

        # if use_asap_pbc is True, then use user defined compositing procedures
        # if use_asap_pbc is False, then the mosaic() reducer is used instead
        use_asap_pbc = self.request.get('use_asap_pbc')

        """Sets up the request to Earth Engine and returns the map information."""
        ee.Initialize(config.EE_CREDENTIALS)#todo PG reactivate
        ee.data.setDeadline(120000)

        try: # todo PG edit
            urlfetch.set_default_fetch_deadline(120000)
        except:
            pass

        gaul1 = ee.FeatureCollection('users/gglemoine62/asap_level1')
        asap1_id = int(self.request.get('asap1_id'))
        cloud_pcent = int(self.request.get('cloudpcent'))

        deltad = int(self.request.get('deltad'))
        end_date = ee.Date(self.request.get('end_period'))
        start_date = end_date.advance(-deltad, 'day')

        roi = ee.Feature(gaul1.filterMetadata('asap1_id', 'equals', asap1_id).first())

        # start_date = ee.Date('2017-06-20') #ee.Date(datetime.datetime.now()).advance(-40, 'day')
        # end_date = ee.Date('2017-07-20') #ee.Date(datetime.datetime.now()).advance(-10, 'day')
        start_date_1Y = start_date.advance(-1, 'year')
        end_date_1Y = end_date.advance(-1, 'year')

        layers = []

        # Select S2
        s2_visualization_options = {
            'bands': ','.join(['B8', 'B11', 'B4']),
            'min': 0,
            'max': ','.join(['6000', '6000', '4000']),
            'format': 'png'
        }

        if use_asap_pbc is True:

            weights = asap_highres.pbc_weights_selector(interval=deltad)

            s2now = asap_highres.get_single_asap_pbc_layer(start_date,
                                                           end_date,
                                                           region=roi.geometry(),
                                                           weights=weights,
                                                           add_DOY=do_add_DOY_band,
                                                           add_nOBS=do_add_nOBS_band)# ***PG Edit***
        elif use_asap_pbc is False:

            s2nowCol = ee.ImageCollection('COPERNICUS/S2')\
                        .filterDate(start_date, end_date)\
                        .filterMetadata('CLOUDY_PIXEL_PERCENTAGE', 'less_than', cloud_pcent)\
                        .map(asap_highres.s2_cloudmasking)\
                        .map(asap_highres.add_DOY_band)\
                        .filterBounds(roi.geometry())

            s2now = ee.Image(s2nowCol.mosaic()).clip(roi.geometry())

            s2now = s2now.addBands([asap_highres.get_nObs_band(s2nowCol).clip(roi.geometry())])  # ***PG Edit***


        s2now_visualization = s2now.getMapId(s2_visualization_options)

        s2now_nb = int(s2now.bandNames().size().getInfo())
        # Add the recent Sentinel-2 composite.
        if s2now_nb > 0:
            layers.append({
                'mapid': s2now_visualization['mapid'],
                'label': "Sentinel-2 ({} to {})".format(ee.Date.format(start_date, 'd MMM Y').getInfo(),
                                                        ee.Date.format(end_date, 'd MMM Y').getInfo()),
                'token': s2now_visualization['token']
            })

        if use_asap_pbc is True:

            s2lastyear = asap_highres.get_single_asap_pbc_layer(start_date_1Y,
                                                                end_date_1Y,
                                                                region=roi.geometry(),
                                                                weights=weights,
                                                                add_DOY=do_add_DOY_band,
                                                                add_nOBS=do_add_nOBS_band)  # ***PG Edit***

        elif use_asap_pbc is False:

            s2lastCol = ee.ImageCollection('COPERNICUS/S2') \
                          .filterDate(start_date_1Y, end_date_1Y) \
                          .filterMetadata('CLOUDY_PIXEL_PERCENTAGE', 'less_than', cloud_pcent) \
                          .map(asap_highres.s2_cloudmasking) \
                          .map(asap_highres.add_DOY_band) \
                          .filterBounds(roi.geometry())

            s2lastyear = ee.Image(s2lastCol.mosaic()).clip(roi.geometry())

            s2lastyear = s2lastyear.addBands([asap_highres.get_nObs_band(s2lastCol).clip(roi.geometry())])  # ***PG Edit***

        # Add the last years Sentinel-2 composite.
        s2lastyear_visualization = s2lastyear.getMapId(s2_visualization_options)

        s2ly_nb = int(s2lastyear.bandNames().size().getInfo())

        if s2ly_nb > 0:
            layers.append({
                'mapid': s2lastyear_visualization['mapid'],
                'label': "Sentinel-2 ({} to {})".format(ee.Date.format(start_date_1Y, 'd MMM Y').getInfo(),
                                                        ee.Date.format(end_date_1Y, 'd MMM Y').getInfo()),
                'token': s2lastyear_visualization['token']
            })

        # ***PG Edit***
        if do_add_DOY_band:# prepare inputs for visualization of observation DOY band

            # currently get min and max DOY from daterange
            minmax_doy_1 = [start_date.getRelative('day', 'year').add(1).getInfo(), end_date.getRelative('day', 'year').add(1).getInfo()]
            minmax_doy_2 = [start_date_1Y.getRelative('day', 'year').add(1).getInfo(),end_date_1Y.getRelative('day', 'year').add(1).getInfo()]

            s2_DOY_visopts1 = {'bands': 'DOY', 'min': str(minmax_doy_1[0]), 'max': str(minmax_doy_1[1]), 'palette': "08ff1d, ff1306"}
            s2_DOY_visopts2 = {'bands': 'DOY', 'min': str(minmax_doy_2[0]), 'max': str(minmax_doy_2[1]), 'palette': "08ff1d, ff1306"}
            # compute visualization:
            s2now_DOY_vis = s2now.getMapId(s2_DOY_visopts1)
            s2last_DOY_vis = s2lastyear.getMapId(s2_DOY_visopts2)
            # compile layer specific information
            doy_layer_info_this = {'mapid': s2now_DOY_vis['mapid'],
                                   'label':'S2 Observation DOY (min={0},max={1})'.format(minmax_doy_1[0],minmax_doy_1[1]),
                                   'token': s2now_DOY_vis['token']}

            doy_layer_info_last = {'mapid': s2last_DOY_vis['mapid'],
                                   'label':'S2 Observation DOY (min={0},max={1})'.format(minmax_doy_2[0],minmax_doy_2[1]),
                                   'token': s2last_DOY_vis['token']}
            # append specific information to result list
            layers.append(doy_layer_info_this)
            layers.append(doy_layer_info_last)

        # ***PG Edit***
        if do_add_nOBS_band:  # prepare inputs for visualization of Number of Observations (nObs)_band:

            # currently get min max values for stretch as [0, nDaysInterval]
            minmax_nObs_1 = [0, minmax_doy_1[1] - minmax_doy_1[0]]
            minmax_nObs_2 = [0, minmax_doy_2[1] - minmax_doy_2[0]]

            s2_NOBS_visopts1 = {'bands': 'nObs', 'min': str(minmax_nObs_1[0]), 'max': str(minmax_nObs_1[1]), 'palette': '000000, 2892C7, FAFA64, E81014'}
            s2_NOBS_visopts2 = {'bands': 'nObs', 'min': str(minmax_nObs_2[0]), 'max': str(minmax_nObs_2[1]), 'palette': '000000, 2892C7, FAFA64, E81014'}

            # compute visualization:
            s2now_NOBS_vis = s2now.getMapId(s2_NOBS_visopts1)
            s2last_NOBS_vis = s2lastyear.getMapId(s2_NOBS_visopts2)

            # compile layer specific information
            nObs_layer_info_this = {'mapid': s2now_NOBS_vis['mapid'],
                                   'label': 'S2 Number of clear observations (min={0},max={1})'.format(minmax_nObs_1[0], minmax_nObs_1[1]),
                                   'token': s2now_NOBS_vis['token']}

            nObs_layer_info_last = {'mapid': s2last_NOBS_vis['mapid'],
                                   'label': 'S2 Number of clear observations (min={0},max={1})'.format(minmax_nObs_2[0], minmax_nObs_2[1]),
                                   'token': s2last_NOBS_vis['token']}

            # append specific information to result list
            layers.append(nObs_layer_info_this)
            layers.append(nObs_layer_info_last)


        if (s2now_nb > 0) and (s2ly_nb > 0):
            s2diff = s2now.normalizedDifference(['B8', 'B4']).subtract(s2lastyear.normalizedDifference(['B8', 'B4']))

            red2green = ['ffffff', 'a50026', 'd73027', 'f46d43', 'fdae61', 'fee08b', 'ffffbf', 'd9ef8b', 'a6d96a',
                         '66bd63', '1a9850', '006837'];

            s2diff_visualization_options = {
                'palette': ','.join(red2green),
                'min': -0.6,
                'max': 0.6,
                'format': 'png'
            }

            s2diff_visualization = ee.Image(s2diff).getMapId(s2diff_visualization_options)

            layers.append({
                'mapid': s2diff_visualization['mapid'],
                'label': 'Sentinel-2 NDVI difference',
                'token': s2diff_visualization['token']
            })

        if use_asap_pbc is False:

            L8NowCol = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')\
                            .filterDate(start_date, end_date)\
                            .filterMetadata('CLOUD_COVER_LAND', 'less_than', cloud_pcent)\
                            .map(asap_highres.L8_TOA_masking)\
                            .map(asap_highres.add_DOY_band)\
                            .filterBounds(roi.geometry())

            l8now = ee.Image(L8NowCol.mosaic()).clip(roi.geometry())

            l8now = l8now.addBands([asap_highres.get_nObs_band(L8NowCol).clip(roi.geometry())])  # ***PG Edit***

        elif use_asap_pbc is True:

            l8now = asap_highres.get_single_asap_pbc_layer(start_date,
                                                           end_date,
                                                           sensor='L8',
                                                           region=roi.geometry(),
                                                           weights=weights,
                                                           add_DOY=do_add_DOY_band,
                                                           add_nOBS=do_add_nOBS_band)  # ***PG Edit***


        # A set of visualization parameters using the landcover palette.
        l8_visualization_options = {
            'bands': ','.join(['B5', 'B6', 'B4']),
            'min': 0,
            'max': ','.join(['0.6', '0.6', '0.4']),
            'format': 'png'
        }

        l8now_visualization = l8now.getMapId(l8_visualization_options)
        l8now_nb = int(l8now.bandNames().size().getInfo())

        if l8now_nb > 0:
            layers.append({
                'mapid': l8now_visualization['mapid'],
                'label': "Landsat-8 ({}  to {})".format(ee.Date.format(start_date, 'd MMM Y').getInfo(),
                                                        ee.Date.format(end_date, 'd MMM Y').getInfo()),
                'token': l8now_visualization['token']
            })

        if use_asap_pbc is False:

            # mosaic() based composite
            L8LastCol = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')\
                            .filterDate(start_date_1Y, end_date_1Y) \
                            .filterMetadata('CLOUD_COVER_LAND', 'less_than', cloud_pcent)\
                            .map(asap_highres.L8_TOA_masking)\
                            .map(asap_highres.add_DOY_band)\
                            .filterBounds(roi.geometry())

            l8lastyear = ee.Image(L8LastCol.mosaic()).clip(roi.geometry())

            l8lastyear = l8lastyear.addBands([asap_highres.get_nObs_band(L8LastCol).clip(roi.geometry())])  # ***PG Edit***

        elif use_asap_pbc is True:
            # ***PG Edit***
            l8lastyear = asap_highres.get_single_asap_pbc_layer(start_date_1Y,
                                                                end_date_1Y,
                                                                sensor='L8',
                                                                region=roi.geometry(),
                                                                weights=weights,
                                                                add_DOY=do_add_DOY_band,
                                                                add_nOBS=do_add_nOBS_band)

        l8lastyear_visualization = l8lastyear.getMapId(l8_visualization_options)

        l8ly_nb = int(l8lastyear.bandNames().size().getInfo())

        # ***PG Edit***
        if do_add_DOY_band:  # prepare inputs for visualization of observation DOY band

            # assuming minmax_doy_1 minmax_doy_2 has already been computed for s2
            # also assuming s2_DOY_visopts1 has already been computed for S2 - is also valid for L9

            # compute visualization:
            l8now_DOY_vis = s2now.getMapId(s2_DOY_visopts1)
            l8lastyear_DOY_vis = s2lastyear.getMapId(s2_DOY_visopts2)

            # compile layer specific information
            l8_doy_layer_info_this = {'mapid': l8now_DOY_vis['mapid'],
                                   'label': 'L8 Observation DOY (min={0},max={1})'.format(minmax_doy_1[0],
                                                                                       minmax_doy_1[1]),
                                   'token': l8now_DOY_vis['token']}

            l8_doy_layer_info_last = {'mapid': l8lastyear_DOY_vis['mapid'],
                                   'label': 'L8 Observation DOY (min={0},max={1})'.format(minmax_doy_2[0],
                                                                                       minmax_doy_2[1]),
                                   'token': l8lastyear_DOY_vis['token']}
            # append specific information to result list
            layers.append(l8_doy_layer_info_this)
            layers.append(l8_doy_layer_info_last)

        # ***PG Edit***
        if do_add_nOBS_band:  # prepare inputs for visualization of Number of Observations (nObs)_band:

            # compute visualization:
            l8now_NOBS_vis = l8now.getMapId(s2_NOBS_visopts1)
            l8lastyear_NOBS_vis = l8lastyear.getMapId(s2_NOBS_visopts2)

            # compile layer specific information
            l8_nObs_layer_info_this = {'mapid': l8now_NOBS_vis['mapid'],
                                    'label': 'L8 Number of clear observations (min={0},max={1})'.format(minmax_nObs_1[0],
                                                                                                     minmax_nObs_1[1]),
                                    'token': l8now_NOBS_vis['token']}

            l8_nObs_layer_info_last = {'mapid': l8lastyear_NOBS_vis['mapid'],
                                    'label': 'L8 Number of clear observations (min={0},max={1})'.format(minmax_nObs_2[0],
                                                                                                     minmax_nObs_2[1]),
                                    'token': l8lastyear_NOBS_vis['token']}

            # append specific information to result list
            layers.append(l8_nObs_layer_info_this)
            layers.append(l8_nObs_layer_info_last)

        if l8ly_nb > 0:
            layers.append({
                'mapid': l8lastyear_visualization['mapid'],
                'label': "Landsat-8 ({} to {})".format(ee.Date.format(start_date_1Y, 'd MMM Y').getInfo(),
                                                       ee.Date.format(end_date_1Y, 'd MMM Y').getInfo()),
                'token': l8lastyear_visualization['token']
            })

        if (l8now_nb > 0) and (l8ly_nb > 0):
            l8diff = l8now.normalizedDifference(['B5', 'B4']).subtract(l8lastyear.normalizedDifference(['B5', 'B4']))

            red2green = ['ffffff', 'a50026', 'd73027', 'f46d43', 'fdae61', 'fee08b', 'ffffbf', 'd9ef8b', 'a6d96a',
                         '66bd63', '1a9850', '006837'];

            l8diff_visualization_options = {
                'palette': ','.join(red2green),
                'min': -0.6,
                'max': 0.6,
                'format': 'png'
            }

            l8diff_visualization = l8diff.getMapId(l8diff_visualization_options)

            layers.append({
                'mapid': l8diff_visualization['mapid'],
                'label': 'Landsat 8 NDVI difference',
                'token': l8diff_visualization['token']
            })

        if not layers:
            layers.append({'mapid': None, 'label': 'No S2, L8 found for periods', 'token': None})
        else:
            background = ee.Image().getMapId({})
            layers.append({'mapid': background['mapid'], 'label': 'Google Background', 'token': background['token']})
            # The number of samples we want to use to train our classifier.

        self.response.out.write(json.dumps(layers))
예제 #8
0
def from_scene_et_fraction(scene_coll,
                           start_date,
                           end_date,
                           variables,
                           model_args,
                           t_interval='custom',
                           interp_method='linear',
                           interp_days=32,
                           _interp_vars=['et_fraction', 'ndvi'],
                           use_joins=False):
    """

    Parameters
    ----------
    scene_coll : ee.ImageCollection

    start_date : str

    end_date : str

    variables : list
        List of variables that will be returned in the Image Collection.
    model_args : dict

    t_interval : {'daily', 'monthly', 'annual', 'custom'}, optional
        Time interval over which to interpolate and aggregate values
        The default is 'custom' which means the aggregation time period
        will be controlled by the start and end date parameters.
    interp_method : {'linear}, optional
        Interpolation method.  The default is 'linear'.
    interp_days : int, str, optional
        Number of extra days before the start date and after the end date
        to include in the interpolation calculation. The default is 32.
    _interp_vars : list, optional
        The variables that can be interpolated to daily timesteps.
        The default is to interpolate the 'et_fraction' and 'ndvi' bands.

    Returns
    -------
    ee.ImageCollection

    Raises
    ------
    ValueError

    """

    # Check that the input parameters are valid
    if t_interval.lower() not in ['daily', 'monthly', 'annual', 'custom']:
        raise ValueError('unsupported t_interval: {}'.format(t_interval))
    elif interp_method.lower() not in ['linear']:
        raise ValueError('unsupported interp_method: {}'.format(interp_method))

    if type(interp_days) is str and utils.is_number(interp_days):
        interp_days = int(interp_days)
    elif not type(interp_days) is int:
        raise TypeError('interp_days must be an integer')
    elif interp_days <= 0:
        raise ValueError('interp_days must be a positive integer')

    if not variables:
        raise ValueError('variables parameter must be set')

    # Adjust start/end dates based on t_interval
    # Increase the date range to fully include the time interval
    start_dt = datetime.datetime.strptime(start_date, '%Y-%m-%d')
    end_dt = datetime.datetime.strptime(end_date, '%Y-%m-%d')
    if t_interval.lower() == 'annual':
        start_dt = datetime.datetime(start_dt.year, 1, 1)
        # Covert end date to inclusive, flatten to beginning of year,
        # then add a year which will make it exclusive
        end_dt -= relativedelta(days=+1)
        end_dt = datetime.datetime(end_dt.year, 1, 1)
        end_dt += relativedelta(years=+1)
    elif t_interval.lower() == 'monthly':
        start_dt = datetime.datetime(start_dt.year, start_dt.month, 1)
        end_dt -= relativedelta(days=+1)
        end_dt = datetime.datetime(end_dt.year, end_dt.month, 1)
        end_dt += relativedelta(months=+1)
    start_date = start_dt.strftime('%Y-%m-%d')
    end_date = end_dt.strftime('%Y-%m-%d')

    # The start/end date for the interpolation include more days
    # (+/- interp_days) than are included in the ETr collection
    interp_start_dt = start_dt - datetime.timedelta(days=interp_days)
    interp_end_dt = end_dt + datetime.timedelta(days=interp_days)
    interp_start_date = interp_start_dt.date().isoformat()
    interp_end_date = interp_end_dt.date().isoformat()

    # Get reference ET source
    if 'et_reference_source' in model_args.keys():
        et_reference_source = model_args['et_reference_source']
    else:
        raise ValueError('et_reference_source was not set')

    # Get reference ET band name
    if 'et_reference_band' in model_args.keys():
        et_reference_band = model_args['et_reference_band']
    else:
        raise ValueError('et_reference_band was not set')

    # Get reference ET factor
    if 'et_reference_factor' in model_args.keys():
        et_reference_factor = model_args['et_reference_factor']
    else:
        et_reference_factor = 1.0
        logging.debug('et_reference_factor was not set, default to 1.0')
        # raise ValueError('et_reference_factor was not set')

    # Get reference ET resample
    if 'et_reference_resample' in model_args.keys():
        et_reference_resample = model_args['et_reference_resample']
    else:
        et_reference_resample = 'nearest'
        logging.debug('et_reference_resample was not set, default to nearest')
        # raise ValueError('et_reference_resample was not set')

    if type(et_reference_source) is str:
        # Assume a string source is an single image collection ID
        #   not an list of collection IDs or ee.ImageCollection
        daily_et_reference_coll = ee.ImageCollection(et_reference_source) \
            .filterDate(start_date, end_date) \
            .select([et_reference_band], ['et_reference'])
    # elif isinstance(et_reference_source, computedobject.ComputedObject):
    #     # Interpret computed objects as image collections
    #     daily_et_reference_coll = ee.ImageCollection(et_reference_source)\
    #         .select([et_reference_band])\
    #         .filterDate(self.start_date, self.end_date)
    else:
        raise ValueError(
            'unsupported et_reference_source: {}'.format(et_reference_source))

    # TODO: Need to add time and mask to the scene collection
    # The time band is always needed for interpolation
    interp_vars = _interp_vars + ['time']

    # DEADBEEF - I don't think this is needed since interp_vars is hardcoded
    # # Initialize variable list to only variables that can be interpolated
    # interp_vars = list(set(interp_vars) & set(variables))
    #
    # # To return ET, the ETf must be interpolated
    # if 'et' in variables and 'et_fraction' not in interp_vars:
    #     interp_vars.append('et_fraction')
    #
    # # With the current interpolate.daily() function,
    # #   something has to be interpolated in order to return et_reference
    # if 'et_reference' in variables and 'et_fraction' not in interp_vars:
    #     interp_vars.append('et_fraction')

    # Filter scene collection to the interpolation range
    # This probably isn't needed since scene_coll was built to this range
    # scene_coll = scene_coll.filterDate(interp_start_date, interp_end_date)

    # For count, compute the composite/mosaic image for the mask band only
    if 'count' in variables:
        aggregate_coll = openet.core.interpolate.aggregate_daily(
            image_coll=scene_coll.select(['mask']),
            start_date=start_date,
            end_date=end_date)

        # The following is needed because the aggregate collection can be
        #   empty if there are no scenes in the target date range but there
        #   are scenes in the interpolation date range.
        # Without this the count image will not be built but the other
        #   bands will be which causes a non-homogeneous image collection.
        aggregate_coll = aggregate_coll.merge(
            ee.Image.constant(0).rename(['mask']).set(
                {'system:time_start': ee.Date(start_date).millis()}))

    # Interpolate to a daily time step
    # NOTE: the daily function is not computing ET (ETf x ETr)
    #   but is returning the target (ETr) band
    daily_coll = openet.core.interpolate.daily(
        target_coll=daily_et_reference_coll,
        source_coll=scene_coll.select(interp_vars),
        interp_method=interp_method,
        interp_days=interp_days,
        use_joins=use_joins,
    )

    # Compute ET from ETf and ETr (if necessary)
    # The check for et_fraction is needed since it is back computed from ET and ETr
    # if 'et' in variables or 'et_fraction' in variables:
    def compute_et(img):
        """This function assumes ETr and ETf are present"""
        et_img = img.select(['et_fraction'
                             ]).multiply(img.select(['et_reference']))
        return img.addBands(et_img.double().rename('et'))

    daily_coll = daily_coll.map(compute_et)

    def aggregate_image(agg_start_date, agg_end_date, date_format):
        """Aggregate the daily images within the target date range

        Parameters
        ----------
        agg_start_date: str
            Start date (inclusive).
        agg_end_date : str
            End date (exclusive).
        date_format : str
            Date format for system:index (uses EE JODA format).

        Returns
        -------
        ee.Image

        Notes
        -----
        Since this function takes multiple inputs it is being called
        for each time interval by separate mappable functions

        """
        # if 'et' in variables or 'et_fraction' in variables:
        et_img = daily_coll.filterDate(agg_start_date, agg_end_date) \
            .select(['et']).sum()
        # if 'et_reference' in variables or 'et_fraction' in variables:
        et_reference_img = daily_coll.filterDate(agg_start_date,
                                                 agg_end_date) \
            .select(['et_reference']).sum()

        if et_reference_factor:
            et_img = et_img.multiply(et_reference_factor)
            et_reference_img = et_reference_img.multiply(et_reference_factor)

        # DEADBEEF - This doesn't seem to be doing anything
        if et_reference_resample in ['bilinear', 'bicubic']:
            et_reference_img = et_reference_img.resample(et_reference_resample)

        image_list = []
        if 'et' in variables:
            image_list.append(et_img.float())
        if 'et_reference' in variables:
            image_list.append(et_reference_img.float())
        if 'et_fraction' in variables:
            # Compute average et fraction over the aggregation period
            image_list.append(
                et_img.divide(et_reference_img).rename(['et_fraction'
                                                        ]).float())
        if 'ndvi' in variables:
            # Compute average ndvi over the aggregation period
            ndvi_img = daily_coll \
                .filterDate(agg_start_date, agg_end_date) \
                .mean().select(['ndvi']).float()
            image_list.append(ndvi_img)
        if 'count' in variables:
            count_img = aggregate_coll \
                .filterDate(agg_start_date, agg_end_date) \
                .select(['mask']).sum().rename('count').uint8()
            image_list.append(count_img)

        return ee.Image(image_list) \
            .set({
                'system:index': ee.Date(agg_start_date).format(date_format),
                'system:time_start': ee.Date(agg_start_date).millis()})
        #     .set(interp_properties) \

    # Combine input, interpolated, and derived values
    if t_interval.lower() == 'daily':

        def agg_daily(daily_img):
            # CGM - Double check that this time_start is a 0 UTC time.
            # It should be since it is coming from the interpolate source
            #   collection, but what if source is GRIDMET (+6 UTC)?
            agg_start_date = ee.Date(daily_img.get('system:time_start'))
            # CGM - This calls .sum() on collections with only one image
            return aggregate_image(
                agg_start_date=agg_start_date,
                agg_end_date=ee.Date(agg_start_date).advance(1, 'day'),
                date_format='YYYYMMdd')

        return ee.ImageCollection(daily_coll.map(agg_daily))

    elif t_interval.lower() == 'monthly':

        def month_gen(iter_start_dt, iter_end_dt):
            iter_dt = iter_start_dt
            # Conditional is "less than" because end date is exclusive
            while iter_dt < iter_end_dt:
                yield iter_dt.strftime('%Y-%m-%d')
                iter_dt += relativedelta(months=+1)

        month_list = ee.List(list(month_gen(start_dt, end_dt)))

        def agg_monthly(agg_start_date):
            return aggregate_image(
                agg_start_date=agg_start_date,
                agg_end_date=ee.Date(agg_start_date).advance(1, 'month'),
                date_format='YYYYMM')

        return ee.ImageCollection(month_list.map(agg_monthly))

    elif t_interval.lower() == 'annual':

        def year_gen(iter_start_dt, iter_end_dt):
            iter_dt = iter_start_dt
            while iter_dt < iter_end_dt:
                yield iter_dt.strftime('%Y-%m-%d')
                iter_dt += relativedelta(years=+1)

        year_list = ee.List(list(year_gen(start_dt, end_dt)))

        def agg_annual(agg_start_date):
            return aggregate_image(
                agg_start_date=agg_start_date,
                agg_end_date=ee.Date(agg_start_date).advance(1, 'year'),
                date_format='YYYY')

        return ee.ImageCollection(year_list.map(agg_annual))

    elif t_interval.lower() == 'custom':
        # Returning an ImageCollection to be consistent
        return ee.ImageCollection(
            aggregate_image(agg_start_date=start_date,
                            agg_end_date=end_date,
                            date_format='YYYYMMdd'))
예제 #9
0
    def aggregate_image(agg_start_date, agg_end_date, date_format):
        """Aggregate the daily images within the target date range

        Parameters
        ----------
        agg_start_date: str
            Start date (inclusive).
        agg_end_date : str
            End date (exclusive).
        date_format : str
            Date format for system:index (uses EE JODA format).

        Returns
        -------
        ee.Image

        Notes
        -----
        Since this function takes multiple inputs it is being called
        for each time interval by separate mappable functions

        """
        # if 'et' in variables or 'et_fraction' in variables:
        et_img = daily_coll.filterDate(agg_start_date, agg_end_date) \
            .select(['et']).sum()
        # if 'et_reference' in variables or 'et_fraction' in variables:
        et_reference_img = daily_coll.filterDate(agg_start_date,
                                                 agg_end_date) \
            .select(['et_reference']).sum()

        if et_reference_factor:
            et_img = et_img.multiply(et_reference_factor)
            et_reference_img = et_reference_img.multiply(et_reference_factor)

        # DEADBEEF - This doesn't seem to be doing anything
        if et_reference_resample in ['bilinear', 'bicubic']:
            et_reference_img = et_reference_img.resample(et_reference_resample)

        image_list = []
        if 'et' in variables:
            image_list.append(et_img.float())
        if 'et_reference' in variables:
            image_list.append(et_reference_img.float())
        if 'et_fraction' in variables:
            # Compute average et fraction over the aggregation period
            image_list.append(
                et_img.divide(et_reference_img).rename(['et_fraction'
                                                        ]).float())
        if 'ndvi' in variables:
            # Compute average ndvi over the aggregation period
            ndvi_img = daily_coll \
                .filterDate(agg_start_date, agg_end_date) \
                .mean().select(['ndvi']).float()
            image_list.append(ndvi_img)
        if 'count' in variables:
            count_img = aggregate_coll \
                .filterDate(agg_start_date, agg_end_date) \
                .select(['mask']).sum().rename('count').uint8()
            image_list.append(count_img)

        return ee.Image(image_list) \
            .set({
                'system:index': ee.Date(agg_start_date).format(date_format),
                'system:time_start': ee.Date(agg_start_date).millis()})
          #dont use more than 30 images
          if i < 50:
              #save the name of the image in a list
              p = features[i]['properties']['system:index']
              print(p)
              listID.append(p)
        print("Appeneded all to the list")
        
        output_list = [] #create new image collection
        # loop over all images of the list and apply atmospheric correction
        counter = 0
        for m in listID:
            S2 = ee.Image(f'COPERNICUS/S2/{m}')
            toa = S2.divide(10000)
            info = S2.getInfo()['properties']
            date = ee.Date(datetime.datetime.utcfromtimestamp(info['system:time_start']/1000))
            #print(date)


            ### Credits to SAM MURPHY ####
            scene_date = datetime.datetime.utcfromtimestamp(info['system:time_start']/1000)# i.e. Python uses seconds, EE uses milliseconds
            #print(scene_date)
            solar_z = info['MEAN_SOLAR_ZENITH_ANGLE']
            h2o = Atmospheric.water(geom,date).getInfo()
            o3 = Atmospheric.ozone(geom,date).getInfo()
            aot = Atmospheric.aerosol(geom,date).getInfo()
            SRTM = ee.Image('CGIAR/SRTM90_V4')# Shuttle Radar Topography mission covers *most* of the Earth
            alt = SRTM.reduceRegion(reducer = ee.Reducer.mean(),geometry = geom.centroid()).get('elevation').getInfo()
            km = alt/1000 # i.e. Py6S uses units of kilometers
            s = SixS()
예제 #11
0
def get_image_collection_gif(
    ee_ic,
    out_dir,
    out_gif,
    vis_params,
    region,
    cmap=None,
    proj=None,
    fps=10,
    mp4=False,
    grid_interval=None,
    plot_title="",
    date_format="YYYY-MM-dd",
    fig_size=(10, 10),
    dpi_plot=100,
    file_format="png",
    north_arrow_dict={},
    scale_bar_dict={},
    verbose=True,
):
    """Download all the images in an image collection and use them to generate a gif/video.
    Args:
        ee_ic (object): ee.ImageCollection
        out_dir (str): The output directory of images and video.
        out_gif (str): The name of the gif file.
        vis_params (dict): Visualization parameters as a dictionary.
        region (list | tuple): Geospatial region of the image to render in format [E,S,W,N].
        fps (int, optional): Video frames per second. Defaults to 10.
        mp4 (bool, optional): Whether to create mp4 video.
        grid_interval (float | tuple[float]): Float specifying an interval at which to create gridlines, units are decimal degrees. lists will be interpreted a (x_interval, y_interval), such as (0.1, 0.1). Defaults to None.
        plot_title (str): Plot title. Defaults to "".
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to "YYYY-MM-dd".
        fig_size (tuple, optional): Size of the figure.
        dpi_plot (int, optional): The resolution in dots per inch of the plot.
        file_format (str, optional): Either 'png' or 'jpg'.
        north_arrow_dict (dict, optional): Parameters for the north arrow. See https://geemap.org/cartoee/#geemap.cartoee.add_north_arrow. Defaults to {}.
        scale_bar_dict (dict, optional): Parameters for the scale bar. See https://geemap.org/cartoee/#geemap.cartoee.add_scale_bar. Defaults. to {}.
        verbose (bool, optional): Whether or not to print text when the program is running. Defaults to True.
    """

    from .geemap import png_to_gif

    import matplotlib.pyplot as plt

    out_dir = os.path.abspath(out_dir)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    out_gif = os.path.join(out_dir, out_gif)

    count = int(ee_ic.size().getInfo())
    names = ee_ic.aggregate_array("system:index").getInfo()
    images = ee_ic.toList(count)

    dates = ee_ic.aggregate_array("system:time_start")
    dates = dates.map(lambda d: ee.Date(d).format(date_format)).getInfo()

    # list of file name
    img_list = []

    for i, date in enumerate(dates):
        image = ee.Image(images.get(i))
        name = str(names[i])
        name = name + "." + file_format
        out_img = os.path.join(out_dir, name)
        img_list.append(out_img)

        if verbose:
            print(f"Downloading {i+1}/{count}: {name} ...")

        # Size plot
        plt.figure(figsize=fig_size)

        # Plot image
        ax = get_map(image,
                     region=region,
                     vis_params=vis_params,
                     cmap=cmap,
                     proj=proj)

        # Add grid
        if grid_interval is not None:
            add_gridlines(ax, interval=grid_interval, linestyle=":")

        # Add title
        if len(plot_title) > 0:
            ax.set_title(label=plot_title + " " + date + "\n", fontsize=15)

        # Add scale bar
        if len(scale_bar_dict) > 0:
            add_scale_bar(ax, **scale_bar_dict)
        # Add north arrow
        if len(north_arrow_dict) > 0:
            add_north_arrow(ax, **north_arrow_dict)

        # Save plot
        plt.savefig(fname=out_img, dpi=dpi_plot)

        plt.clf()
        plt.close()

    out_gif = os.path.abspath(out_gif)
    png_to_gif(out_dir, out_gif, fps)
    if verbose:
        print(f"GIF saved to {out_gif}")

    if mp4:

        video_filename = out_gif.replace(".gif", ".mp4")

        try:
            import cv2
        except ImportError:
            print("Installing opencv-python ...")
            subprocess.check_call(
                ["python", "-m", "pip", "install", "opencv-python"])
            import cv2

        # Video file name
        output_video_file_name = os.path.join(out_dir, video_filename)

        frame = cv2.imread(img_list[0])
        height, width, _ = frame.shape
        frame_size = (width, height)
        fps_video = fps

        # Make mp4
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")

        # Function
        def convert_frames_to_video(input_list, output_video_file_name,
                                    fps_video, frame_size):
            """Convert frames to video

            Args:

                input_list (list): Downloaded Image Name List.
                output_video_file_name (str): The name of the video file in the image directory.
                fps_video (int): Video frames per second.
                frame_size (tuple): Frame size.
            """
            out = cv2.VideoWriter(output_video_file_name, fourcc, fps_video,
                                  frame_size)
            num_frames = len(input_list)

            for i in range(num_frames):
                img_path = input_list[i]
                img = cv2.imread(img_path)
                out.write(img)

            out.release()
            cv2.destroyAllWindows()

        # Use function
        convert_frames_to_video(
            input_list=img_list,
            output_video_file_name=output_video_file_name,
            fps_video=fps_video,
            frame_size=frame_size,
        )

        if verbose:
            print(f"MP4 saved to {output_video_file_name}")
예제 #12
0
ndvi = ee.ImageCollection('MODIS/006/MOD13A2')
# choose dates
ndvi = ndvi.filterDate('2014-12-04', '2015-01-04')
ndvi = ndvi.select(['NDVI', 'EVI'])

# setting the Area of Interest (AOI)
#moz_aoi = ee.Geometry.Rectangle(aoi)
aoi_bound = ndvi.filterBounds(mwi_aoi)

# the least cloudy image
least_cloudy = ee.Image(aoi_bound.sort('CLOUD_COVER').first())
# how cloudy is it?
print('Cloud Cover (%):', least_cloudy.get('CLOUD_COVER').getInfo())
# when was this image taken?
date = ee.Date(least_cloudy.get('system:time_start'))
time = date.getInfo()['value'] / 1000.
dt.utcfromtimestamp(time).strftime('%Y-%m-%d %H:%M:%S')
task = ee.batch.Export.image.toDrive(image=least_cloudy,
                                     region=mwi_aoi.getInfo()['coordinates'],
                                     description='train' + '_ndvi',
                                     folder='train',
                                     fileNamePrefix='ndvi',
                                     scale=30,
                                     crs='EPSG:4326')
task.start()

## Evapotranspiration

evap = ee.ImageCollection("MODIS/006/MOD16A2")
예제 #13
0
def main(ini_path=None,
         overwrite_flag=False,
         delay_time=0,
         gee_key_file=None,
         max_ready=-1,
         reverse_flag=False):
    """Compute monthly Tcorr images by WRS2 tile

    Parameters
    ----------
    ini_path : str
        Input file path.
    overwrite_flag : bool, optional
        If True, overwrite existing files (the default is False).
    delay_time : float, optional
        Delay time in seconds between starting export tasks (or checking the
        number of queued tasks, see "max_ready" parameter).  The default is 0.
    gee_key_file : str, None, optional
        Earth Engine service account JSON key file (the default is None).
    max_ready: int, optional
        Maximum number of queued "READY" tasks.  The default is -1 which is
        implies no limit to the number of tasks that will be submitted.
    reverse_flag : bool, optional
        If True, process WRS2 tiles in reverse order.

    """
    logging.info('\nCompute annual Tcorr images by WRS2 tile')

    ini = utils.read_ini(ini_path)

    model_name = 'SSEBOP'
    # model_name = ini['INPUTS']['et_model'].upper()

    tmax_name = ini[model_name]['tmax_source']

    export_id_fmt = 'tcorr_scene_{product}_{wrs2}_annual'
    asset_id_fmt = '{coll_id}/{wrs2}'

    tcorr_annual_coll_id = '{}/{}_annual'.format(ini['EXPORT']['export_coll'],
                                                 tmax_name.lower())

    wrs2_coll_id = 'projects/earthengine-legacy/assets/' \
                   'projects/usgs-ssebop/wrs2_descending_custom'
    wrs2_tile_field = 'WRS2_TILE'
    # wrs2_path_field = 'ROW'
    # wrs2_row_field = 'PATH'

    try:
        wrs2_tiles = str(ini['INPUTS']['wrs2_tiles'])
        wrs2_tiles = [x.strip() for x in wrs2_tiles.split(',')]
        wrs2_tiles = sorted([x.lower() for x in wrs2_tiles if x])
    except KeyError:
        wrs2_tiles = []
        logging.debug('  wrs2_tiles: not set in INI, defaulting to []')
    except Exception as e:
        raise e

    try:
        study_area_extent = str(ini['INPUTS']['study_area_extent']) \
            .replace('[', '').replace(']', '').split(',')
        study_area_extent = [float(x.strip()) for x in study_area_extent]
    except KeyError:
        study_area_extent = None
        logging.debug('  study_area_extent: not set in INI')
    except Exception as e:
        raise e

    # TODO: Add try/except blocks and default values?
    collections = [x.strip() for x in ini['INPUTS']['collections'].split(',')]
    cloud_cover = float(ini['INPUTS']['cloud_cover'])
    min_pixel_count = float(ini['TCORR']['min_pixel_count'])
    min_scene_count = float(ini['TCORR']['min_scene_count'])

    if (tmax_name.upper() == 'CIMIS'
            and ini['INPUTS']['end_date'] < '2003-10-01'):
        logging.error(
            '\nCIMIS is not currently available before 2003-10-01, exiting\n')
        sys.exit()
    elif (tmax_name.upper() == 'DAYMET'
          and ini['INPUTS']['end_date'] > '2018-12-31'):
        logging.warning('\nDAYMET is not currently available past 2018-12-31, '
                        'using median Tmax values\n')
        # sys.exit()
    # elif (tmax_name.upper() == 'TOPOWX' and
    #         ini['INPUTS']['end_date'] > '2017-12-31'):
    #     logging.warning(
    #         '\nDAYMET is not currently available past 2017-12-31, '
    #         'using median Tmax values\n')
    #     # sys.exit()

    # Extract the model keyword arguments from the INI
    # Set the property name to lower case and try to cast values to numbers
    model_args = {
        k.lower(): float(v) if utils.is_number(v) else v
        for k, v in dict(ini[model_name]).items()
    }
    # et_reference_args = {
    #     k: model_args.pop(k)
    #     for k in [k for k in model_args.keys() if k.startswith('et_reference_')]}

    logging.info('\nInitializing Earth Engine')
    if gee_key_file:
        logging.info(
            '  Using service account key file: {}'.format(gee_key_file))
        # The "EE_ACCOUNT" parameter is not used if the key file is valid
        ee.Initialize(ee.ServiceAccountCredentials('x', key_file=gee_key_file),
                      use_cloud_api=True)
    else:
        ee.Initialize(use_cloud_api=True)

    logging.debug('\nTmax properties')
    tmax_source = tmax_name.split('_', 1)[0]
    tmax_version = tmax_name.split('_', 1)[1]
    tmax_coll_id = 'projects/earthengine-legacy/assets/' \
                   'projects/usgs-ssebop/tmax/{}'.format(tmax_name.lower())
    tmax_coll = ee.ImageCollection(tmax_coll_id)
    tmax_mask = ee.Image(tmax_coll.first()).select([0]).multiply(0)
    logging.debug('  Collection: {}'.format(tmax_coll_id))
    logging.debug('  Source: {}'.format(tmax_source))
    logging.debug('  Version: {}'.format(tmax_version))

    logging.debug('\nExport properties')
    export_info = utils.get_info(ee.Image(tmax_mask))
    if 'daymet' in tmax_name.lower():
        # Custom smaller extent for DAYMET focused on CONUS
        export_extent = [-1999750, -1890500, 2500250, 1109500]
        export_shape = [4500, 3000]
        export_geo = [1000, 0, -1999750, 0, -1000, 1109500]
        # Custom medium extent for DAYMET of CONUS, Mexico, and southern Canada
        # export_extent = [-2099750, -3090500, 2900250, 1909500]
        # export_shape = [5000, 5000]
        # export_geo = [1000, 0, -2099750, 0, -1000, 1909500]
        export_crs = export_info['bands'][0]['crs']
    else:
        export_crs = export_info['bands'][0]['crs']
        export_geo = export_info['bands'][0]['crs_transform']
        export_shape = export_info['bands'][0]['dimensions']
        # export_geo = ee.Image(tmax_mask).projection().getInfo()['transform']
        # export_crs = ee.Image(tmax_mask).projection().getInfo()['crs']
        # export_shape = ee.Image(tmax_mask).getInfo()['bands'][0]['dimensions']
        export_extent = [
            export_geo[2], export_geo[5] + export_shape[1] * export_geo[4],
            export_geo[2] + export_shape[0] * export_geo[0], export_geo[5]
        ]
    export_geom = ee.Geometry.Rectangle(export_extent,
                                        proj=export_crs,
                                        geodesic=False)
    logging.debug('  CRS: {}'.format(export_crs))
    logging.debug('  Extent: {}'.format(export_extent))
    logging.debug('  Geo: {}'.format(export_geo))
    logging.debug('  Shape: {}'.format(export_shape))

    if study_area_extent is None:
        if 'daymet' in tmax_name.lower():
            # CGM - For now force DAYMET to a slightly smaller "CONUS" extent
            study_area_extent = [-125, 25, -65, 49]
            # study_area_extent =  [-125, 25, -65, 52]
        elif 'cimis' in tmax_name.lower():
            study_area_extent = [-124, 35, -119, 42]
        else:
            # TODO: Make sure output from bounds is in WGS84
            study_area_extent = tmax_mask.geometry().bounds().getInfo()
        logging.debug(f'\nStudy area extent not set in INI, '
                      f'default to {study_area_extent}')
    study_area_geom = ee.Geometry.Rectangle(study_area_extent,
                                            proj='EPSG:4326',
                                            geodesic=False)

    if not ee.data.getInfo(tcorr_annual_coll_id):
        logging.info('\nExport collection does not exist and will be built'
                     '\n  {}'.format(tcorr_annual_coll_id))
        input('Press ENTER to continue')
        ee.data.createAsset({'type': 'IMAGE_COLLECTION'}, tcorr_annual_coll_id)

    # Get current asset list
    logging.debug('\nGetting GEE asset list')
    asset_list = utils.get_ee_assets(tcorr_annual_coll_id)
    # if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
    #     pprint.pprint(asset_list[:10])

    # Get current running tasks
    tasks = utils.get_ee_tasks()
    if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
        logging.debug('  Tasks: {}\n'.format(len(tasks)))
        input('ENTER')

    # if cron_flag:
    #     # CGM - This seems like a silly way of getting the date as a datetime
    #     #   Why am I doing this and not using the commented out line?
    #     end_dt = datetime.date.today().strftime('%Y-%m-%d')
    #     end_dt = datetime.datetime.strptime(end_dt, '%Y-%m-%d')
    #     end_dt = end_dt + datetime.timedelta(days=-4)
    #     # end_dt = datetime.datetime.today() + datetime.timedelta(days=-1)
    #     start_dt = end_dt + datetime.timedelta(days=-64)
    # else:
    start_dt = datetime.datetime.strptime(ini['INPUTS']['start_date'],
                                          '%Y-%m-%d')
    end_dt = datetime.datetime.strptime(ini['INPUTS']['end_date'], '%Y-%m-%d')
    start_date = start_dt.strftime('%Y-%m-%d')
    end_date = end_dt.strftime('%Y-%m-%d')
    next_date = (end_dt + datetime.timedelta(days=1)).strftime('%Y-%m-%d')
    logging.debug('Start Date: {}'.format(start_date))
    logging.debug('End Date:   {}\n'.format(end_date))

    # Limit by year and month
    # try:
    #     month_list = sorted(list(utils.parse_int_set(ini['TCORR']['months'])))
    # except:
    #     logging.info('\nTCORR "months" parameter not set in the INI,'
    #                  '\n  Defaulting to all months (1-12)\n')
    #     month_list = list(range(1, 13))
    try:
        year_list = sorted(list(utils.parse_int_set(ini['TCORR']['years'])))
    except:
        logging.info('\nTCORR "years" parameter not set in the INI,'
                     '\n  Defaulting to all available years\n')
        year_list = []

    # Get the list of WRS2 tiles that intersect the data area and study area
    wrs2_coll = ee.FeatureCollection(wrs2_coll_id) \
        .filterBounds(export_geom) \
        .filterBounds(study_area_geom)
    if wrs2_tiles:
        wrs2_coll = wrs2_coll.filter(
            ee.Filter.inList(wrs2_tile_field, wrs2_tiles))
    wrs2_info = wrs2_coll.getInfo()['features']

    for wrs2_ftr in sorted(wrs2_info,
                           key=lambda k: k['properties']['WRS2_TILE'],
                           reverse=reverse_flag):
        wrs2_tile = wrs2_ftr['properties'][wrs2_tile_field]
        logging.info('{}'.format(wrs2_tile))

        wrs2_path = int(wrs2_tile[1:4])
        wrs2_row = int(wrs2_tile[5:8])
        # wrs2_path = wrs2_ftr['properites']['PATH']
        # wrs2_row = wrs2_ftr['properites']['ROW']

        export_id = export_id_fmt.format(product=tmax_name.lower(),
                                         wrs2=wrs2_tile)
        logging.debug('  Export ID: {}'.format(export_id))

        asset_id = asset_id_fmt.format(coll_id=tcorr_annual_coll_id,
                                       wrs2=wrs2_tile)
        logging.debug('  Asset ID: {}'.format(asset_id))

        if overwrite_flag:
            if export_id in tasks.keys():
                logging.debug('  Task already submitted, cancelling')
                ee.data.cancelTask(tasks[export_id]['id'])
            # This is intentionally not an "elif" so that a task can be
            # cancelled and an existing image/file/asset can be removed
            if asset_id in asset_list:
                logging.debug('  Asset already exists, removing')
                ee.data.deleteAsset(asset_id)
        else:
            if export_id in tasks.keys():
                logging.debug('  Task already submitted, exiting')
                continue
            elif asset_id in asset_list:
                logging.debug('  Asset already exists, skipping')
                continue

        # CGM: I couldn't find a way to build this from the Collection class
        # TODO: Will need to be changed/updated for SR collection
        # TODO: Add code to handle real time collections
        landsat_coll = ee.ImageCollection([])
        if 'LANDSAT/LC08/C01/T1_TOA' in collections:
            l8_coll = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') \
                .filterMetadata('WRS_PATH', 'equals', wrs2_path) \
                .filterMetadata('WRS_ROW', 'equals', wrs2_row) \
                .filterMetadata('CLOUD_COVER_LAND', 'less_than', cloud_cover) \
                .filterMetadata('DATA_TYPE', 'equals', 'L1TP') \
                .filter(ee.Filter.gt('system:time_start',
                                     ee.Date('2013-03-24').millis()))
            #     .filterDate(start_date, next_date)
            landsat_coll = landsat_coll.merge(l8_coll)
        if 'LANDSAT/LE07/C01/T1_TOA' in collections:
            l7_coll = ee.ImageCollection('LANDSAT/LE07/C01/T1_TOA') \
                .filterMetadata('WRS_PATH', 'equals', wrs2_path) \
                .filterMetadata('WRS_ROW', 'equals', wrs2_row) \
                .filterMetadata('CLOUD_COVER_LAND', 'less_than', cloud_cover) \
                .filterMetadata('DATA_TYPE', 'equals', 'L1TP')
            #     .filterDate(start_date, next_date)
            landsat_coll = landsat_coll.merge(l7_coll)
        if 'LANDSAT/LT05/C01/T1_TOA' in collections:
            l5_coll = ee.ImageCollection('LANDSAT/LT05/C01/T1_TOA') \
                .filterMetadata('WRS_PATH', 'equals', wrs2_path) \
                .filterMetadata('WRS_ROW', 'equals', wrs2_row) \
                .filterMetadata('CLOUD_COVER_LAND', 'less_than', cloud_cover) \
                .filterMetadata('DATA_TYPE', 'equals', 'L1TP') \
                .filter(ee.Filter.lt('system:time_start',
                                     ee.Date('2011-12-31').millis()))
            #     .filterDate(start_date, next_date)
            landsat_coll = landsat_coll.merge(l5_coll)
        # if 'LANDSAT/LT04/C01/T1_TOA' in collections:
        #     l4_coll = ee.ImageCollection('LANDSAT/LT04/C01/T1_TOA') \
        #         .filterMetadata('WRS_PATH', 'equals', wrs2_path) \
        #         .filterMetadata('WRS_ROW', 'equals', wrs2_row) \
        #         .filterMetadata('CLOUD_COVER_LAND', 'less_than', cloud_cover) \
        #         .filterMetadata('DATA_TYPE', 'equals', 'L1TP')
        #         #     .filterDate(start_date, next_date)
        #     landsat_coll = landsat_coll.merge(l4_coll)

        def tcorr_img_func(landsat_img):
            # TODO: Will need to be changed for SR
            t_obj = ssebop.Image.from_landsat_c1_toa(landsat_img, **model_args)
            t_stats = ee.Dictionary(t_obj.tcorr_stats) \
                .combine({'tcorr_p5': 0, 'tcorr_count': 0}, overwrite=False)
            tcorr = ee.Number(t_stats.get('tcorr_p5'))
            count = ee.Number(t_stats.get('tcorr_count'))

            return tmax_mask.add(tcorr) \
                .rename(['tcorr']) \
                .set({
                'system:time_start': ee.Image(landsat_img).get('system:time_start'),
                'tcorr_value': tcorr,
                'tcorr_pixel_count': count,
            })

        # Filter the Tcorr image collection based on the pixel counts
        tcorr_coll = ee.ImageCollection(landsat_coll.map(tcorr_img_func)) \
            .filterMetadata('tcorr_pixel_count', 'not_less_than', min_pixel_count)

        # Use a common reducer for the image and property stats
        reducer = ee.Reducer.median() \
            .combine(ee.Reducer.count(), sharedInputs=True)

        # Compute stats from the collection images
        # This might be used when Tcorr is spatial
        # tcorr_img = tcorr_coll.reduce(reducer).rename(['tcorr', 'count'])

        # Compute stats from the image properties
        tcorr_stats = ee.List(tcorr_coll.aggregate_array('tcorr_value')) \
            .reduce(reducer)
        tcorr_stats = ee.Dictionary(tcorr_stats) \
            .combine({'median': 0, 'count': 0}, overwrite=False)
        tcorr = ee.Number(tcorr_stats.get('median'))
        count = ee.Number(tcorr_stats.get('count'))
        index = count.lt(min_scene_count).multiply(7).add(2)
        # index = ee.Algorithms.If(count.gte(min_scene_count), 2, 9)

        # Clip the mask image to the Landsat footprint
        # Change mask values to 1 if count >= threshold
        # Mask values of 0 will be set to nodata
        mask_img = tmax_mask.add(count.gte(min_scene_count)) \
            .clip(ee.Geometry(wrs2_ftr['geometry']))
        output_img = ee.Image(
                [mask_img.multiply(tcorr), mask_img.multiply(count)]) \
            .rename(['tcorr', 'count']) \
            .updateMask(mask_img.unmask(0))

        # # Write an empty image if the pixel count is too low
        # # CGM: Check/test if this can be combined into a single If()
        # tcorr_img = ee.Algorithms.If(
        #     count.gte(min_scene_count),
        #     tmax_mask.add(tcorr), tmax_mask.updateMask(0))
        # count_img = ee.Algorithms.If(
        #     count.gte(min_scene_count),
        #     tmax_mask.add(count), tmax_mask.updateMask(0))
        #
        # # Clip to the Landsat image footprint
        # output_img = ee.Image([tcorr_img, count_img]) \
        #     .rename(['tcorr', 'count']) \
        #     .clip(ee.Geometry(wrs2_ftr['geometry']))
        # # Clear the transparency mask
        # output_img = output_img.updateMask(output_img.unmask(0))

        output_img = output_img.set({
            'date_ingested':
            datetime.datetime.today().strftime('%Y-%m-%d'),
            'model_name':
            model_name,
            'model_version':
            ssebop.__version__,
            # 'system:time_start': utils.millis(start_dt),
            'tcorr_value':
            tcorr,
            'tcorr_index':
            index,
            'tcorr_scene_count':
            count,
            'tmax_source':
            tmax_source.upper(),
            'tmax_version':
            tmax_version.upper(),
            'wrs2_path':
            wrs2_path,
            'wrs2_row':
            wrs2_row,
            'wrs2_tile':
            wrs2_tile,
            'years':
            ','.join(map(str, year_list)),
            # 'year_start': year_list[0],
            # 'year_end': year_list[-1],
        })
        # pprint.pprint(output_img.getInfo())
        # input('ENTER')

        logging.debug('  Building export task')
        task = ee.batch.Export.image.toAsset(
            image=output_img,
            description=export_id,
            assetId=asset_id,
            crs=export_crs,
            crsTransform='[' + ','.join(list(map(str, export_geo))) + ']',
            dimensions='{0}x{1}'.format(*export_shape),
        )

        logging.info('  Starting export task')
        utils.ee_task_start(task)

        # Pause before starting the next export task
        utils.delay_task(delay_time, max_ready)
        logging.debug('')
def createTimeBand(img):
    year = img.date().difference(ee.Date('1990-01-01'), 'year')
    return ee.Image(year).float().addBands(img)
예제 #15
0
 def aggregate_monthly(agg_start_date):
     return aggregate_image(
         agg_start_date=agg_start_date,
         agg_end_date=ee.Date(agg_start_date).advance(1, 'month'),
         date_format='YYYYMM')

def createTimeBand(image):
    return image.addBands(image.metadata('system:time_start').divide(1e18))


# createTimeBand = function(image) {
#   # Scale milliseconds by a large constant to avoid very small slopes
#   # in the linear regression output.
#   return image.addBands(image.metadata('system:time_start').divide(1e18))
# }

# Load the input image 'collection': projected climate data.
collection = ee.ImageCollection('NASA/NEX-DCP30_ENSEMBLE_STATS') \
  .filter(ee.Filter.eq('scenario', 'rcp85')) \
  .filterDate(ee.Date('2006-01-01'), ee.Date('2050-01-01')) \
  .map(createTimeBand)

# Reduce the collection with the linear fit reducer.
# Independent variable are followed by dependent variables.
linearFit = collection.select(['system:time_start', 'pr_mean']) \
  .reduce(ee.Reducer.linearFit())

# Display the results.
Map.setCenter(-100.11, 40.38, 5)
Map.addLayer(linearFit, {
    'min': 0,
    'max': [-0.9, 8e-5, 1],
    'bands': ['scale', 'offset', 'scale']
}, 'fit')
예제 #17
0
 def aggregate_annual(agg_start_date):
     return aggregate_image(
         agg_start_date=agg_start_date,
         agg_end_date=ee.Date(agg_start_date).advance(1, 'year'),
         date_format='YYYY')
예제 #18
0
    def process(self,product, date,skipPreprocessing=False):
        try:
            ee.Initialize()
        except EEException as e:
            print(e)

        self._parse_config()

        if product in ['sentinel1','atms','viirs','modis']:
            dt = utils.decode_date(date)
            tomorrow = (dt + datetime.timedelta(1)).strftime('%Y-%m-%d')

            dateDir = os.path.join(self.workdir,dt.strftime('%Y%m%d'))
            prodDir = os.path.join(dateDir,product)

            geom = ee.Geometry.Rectangle(self.region)

            hand = ee.Image(self.hand)

            if product == 'atms':
                params = self.atmsParams
                paramKeys = list(params.keys())

                collId = self.atmsParams['waterFractionAsset']
                worker = Atms(geom,date,tomorrow,collectionid=collId)

                if skipPreprocessing == False:
                    if os.path.exists(dateDir) != True:
                        os.mkdir(dateDir)
                    if os.path.exists(prodDir) != True:
                        os.mkdir(prodDir)

                    geotiffs = worker.extract(dt,self.region,credentials=self.earthdataLogin,outDir=prodDir,gridding_radius=50000)
                    worker.load(geotiffs,self.stagingBucket,collId)

                if 'seed' in paramKeys:
                    permanentWater = ee.Image(self.atmsParams['seed'])
                else:
                    permanentWater = None

                if 'probablistic' in paramKeys:
                    runProbs = params['probablistic']
                else:
                    runProbs = False

                waterImage = worker.waterMap(hand,permanent=permanentWater,probablistic=runProbs)
                waterImage = waterImage.set({'system:time_start':ee.Date(date).millis(),'sensor':product})
                assetTarget = self.targetAsset + '{0}_bathtub_{1}'.format(product,date.replace('-',''))

            elif (product == 'viirs') or (product == 'modis'):
                today = datetime.datetime.now()

                if (today - dt).days < 5:
                    avail = today - datetime.timedelta(5)
                    raise NotImplementedError('NRT processing for VIIRS or MODIS has not been implemented, please select a date prior to {}'.format(avail))
                else:
                    minDate = (dt - datetime.timedelta(45)).strftime('%Y-%m-%d')
                    maxDate = (dt + datetime.timedelta(1)).strftime('%Y-%m-%d')

                    if product == 'modis':
                        worker = Modis(geom,minDate,maxDate,collectionid='MODIS/006/MOD09GA')
                        params = self.viirsParams
                    else:
                        worker = Viirs(geom,minDate,maxDate,collectionid='NOAA/VIIRS/001/VNP09GA')
                        params = self.viirsParams

                    paramKeys = list(params.keys())

                    ls = Landsat(geom,minDate,maxDate,collectionid='LANDSAT/LC08/C01/T1_SR')
                    s2 = Sentinel2(geom,minDate,maxDate,collectionid='COPERNICUS/S2_SR')
                    highRes = ee.ImageCollection(ls.collection.merge(s2.collection))

                    worker.downscale(highRes,target_date=date,windowSize=33,A=0.5)

                    if 'probablistic' in paramKeys:
                        runProbs = params['probablistic']
                        params.pop('probablistic')
                    else:
                        runProbs = False
                        nIters=100
                        probTreshold=0.75

                    waterImage = worker.waterMap(date,hand,probablistic=runProbs,**params)
                    waterImage = waterImage\
                        .set({'system:time_start':ee.Date(date).millis(),'sensor':product})
                    assetTarget = self.targetAsset + '{0}_downscaled_globalOtsu_{1}'.format(product,date.replace('-',''))

            elif product == 'sentinel1':
                previous = (dt + datetime.timedelta(0)).strftime('%Y-%m-%d')
                worker = Sentinel1(geom,previous,tomorrow,collectionid='COPERNICUS/S1_GRD')
                waterImage = worker.waterMap(date).And(hand.lt(30))
                waterImage = waterImage.rename('water')\
                    .set({'system:time_start':ee.Date(date).millis(),'sensor':product})
                assetTarget = self.targetAsset + '{0}_bootstrapOtsu_{1}'.format(product,date.replace('-',''))

            else:
                raise NotImplementedError('select product is currently not implemented, please check back with later versions')

            description = '{0}_water_{1}'.format(product,date)
            geeutils.exportImage(waterImage,geom,assetTarget,description=description)

        else:
            raise NotImplementedError('select product is currently not implemented, please check back with later versions')

        return
예제 #19
0
 def CreateTimeBand(img):
   year = ee.Date(img.get('system:time_start')).get('year').subtract(1991)
   return ee.Image(year).byte().addBands(img)
예제 #20
0
 def time_start(self, year):
     """ Get time start property """
     return ee.Date('{}-{}-{}'.format(year, 1, 1))
예제 #21
0
def getFloodPopbyCountry_LandScan(flood_img):
    """
    Args:
        floodImage : the standard Earth Engine Image object outputted by the map_DFO_event function
        roiGEO : the region of interest as an Earth Engine Geometry object

    Returns:
    -a feature collection of all countries for each flood events
    -with a pop and area count
        - An ee feature with properties including
              'Index': the event index ID
              'Began': start date of event map
              'Ended': end date of event map
              'Flood_Area': total area of detected flood
              'Pop_Exposed': the number of people in the mapped flood from WorldPop data
    """
    import ee
    ee.Initialize()

    roi_geo = flood_img.geometry()

    # Import the LandScan image collection & permannt water mask
    pop_all = ee.ImageCollection("projects/global-flood-db/landscan")
    perm_water = ee.Image("JRC/GSW1_0/GlobalSurfaceWater").select(
        "transition").eq(1).unmask()

    def maskImages(img):
        non_flood = img.select("flooded")
        water_mask = non_flood.multiply(perm_water.neq(1))
        return img.select("flooded").mask(water_mask)

    # Extract the final flood extent image data as its own variable for analysis
    flood_extent = maskImages(ee.Image(flood_img.select("flooded")))

    # Get event year, match with the population year and clip to study are
    event_year = ee.Date(flood_img.get('began')).get('year')
    pop_img = ee.Image(pop_all.filterMetadata('year', 'equals', event_year)\
                    .first()).clip(roi_geo)
    pop_img = pop_img.updateMask(
        pop_img.gte(0))  # mask out bad data with negative values

    # Mask the world population dataset using the flood extent layer
    pop_scale = pop_img.projection().nominalScale()
    pop_masked = pop_img.updateMask(flood_extent)

    # Select the countries for which flood touches
    countries = ee.FeatureCollection(
        'ft:1tdSwUL7MVpOauSgRzqVTOwdfy17KDbw-1d9omPw')
    flood_countries = countries.filterBounds(flood_extent.geometry().bounds())

    # Get area of flood in the scale of the flood map
    flood_area_img = flood_extent.multiply(ee.Image.pixelArea())
    map_scale = flood_extent.projection().nominalScale()
    index = ee.Image(flood_img).get("id")
    began_year = ee.Date(flood_img.get("began")).get("year")
    began_month = ee.Date(flood_img.get("began")).get("month")
    began_day = ee.Date(flood_img.get("began")).get("day")

    def getCountriesPop(ft):
        pop_sum = pop_masked.reduceRegion(reducer=ee.Reducer.sum(),
                                          geometry=ft.geometry(),
                                          scale=pop_scale,
                                          maxPixels=1e9)

        pop = pop_sum.get("b1")

        area_sum = flood_area_img.reduceRegion(reducer=ee.Reducer.sum(),
                                               geometry=ft.geometry(),
                                               scale=map_scale,
                                               maxPixels=1e9)

        sys_id = ee.String(flood_img.get('system:index')).getInfo()

        area = area_sum.get("flooded")
        return ee.Feature(
            None, {
                "system:index": sys_id,
                "id": index,
                "Year": began_year,
                "Month": began_month,
                "Day": began_day,
                "Country": ft.get("Country"),
                "Exposed": pop,
                "Area": area
            })

    country_stats = ee.FeatureCollection(flood_countries).map(getCountriesPop)
    return ee.FeatureCollection(country_stats).set({"id": index})
예제 #22
0
def getS2collection():
    return ee.ImageCollection('COPERNICUS/S2') \
                      .filterBounds(poly) \
                      .filterDate(ee.Date(w_startdate.value),ee.Date(w_enddate.value)) \
                      .sort('CLOUDY_PIXEL_PERCENTAGE',True)
예제 #23
0
 def year_diff(popImg):
     popYear = ee.Date(popImg.get('system:index')).get('year')
     diff = ee.Number(eventYear).subtract(ee.Number(popYear)).abs()
     return popImg.set({"year_diff": diff})
예제 #24
0
def getYear(date):
    return ee.Date(date).get('year')
예제 #25
0
 def wrap(img):
     return ee.Date(ee.Image(img).date().format("YYYY-MM-dd"))
예제 #26
0
    def _build(self, variables=None, start_date=None, end_date=None):
        """Build a merged model variable image collection

        Parameters
        ----------
        variables : list
            Set a variable list that is different than the class variable list.
        start_date : str, optional
            Set a start_date that is different than the class start_date.
            This is needed when defining the scene collection to have extra
            images for interpolation.
        end_date : str, optional
            Set an exclusive end_date that is different than the class end_date.

        Returns
        -------
        ee.ImageCollection

        Raises
        ------
        ValueError if collection IDs are invalid.
        ValueError if variables is not set here and in class init.

        """
        # Override the class parameters if necessary
        if not variables:
            if self.variables:
                variables = self.variables
            else:
                raise ValueError('variables parameter must be set')
        if not start_date:
            start_date = self.start_date
        if not end_date:
            end_date = self.end_date

        # Build the variable image collection
        variable_coll = ee.ImageCollection([])
        for coll_id in self.collections:
            # TODO: Move to separate methods/functions for each collection type
            if coll_id in self._landsat_c2_sr_collections:
                input_coll = ee.ImageCollection(coll_id)\
                    .filterDate(start_date, end_date)\
                    .filterBounds(self.geometry)\
                    .filterMetadata('CLOUD_COVER_LAND', 'less_than',
                                    self.cloud_cover_max)\
                    .filterMetadata('CLOUD_COVER_LAND', 'greater_than', -0.5)
                # TODO: Check if PROCESSING_LEVEL needs to be filtered on
                #     .filterMetadata('PROCESSING_LEVEL', 'equals', 'L2SP')

                # TODO: Need to come up with a system for applying
                #   generic filter arguments to the collections
                if coll_id in self.filter_args.keys():
                    for f in copy.deepcopy(self.filter_args[coll_id]):
                        try:
                            filter_type = f.pop('type')
                        except KeyError:
                            continue
                        if filter_type.lower() == 'equals':
                            input_coll = input_coll.filter(
                                ee.Filter.equals(**f))

                # TODO: Check if these bad images are in collection 2
                # Time filters are to remove bad (L5) and pre-op (L8) images
                if 'LT05' in coll_id:
                    input_coll = input_coll.filter(
                        ee.Filter.lt('system:time_start',
                                     ee.Date('2011-12-31').millis()))
                elif 'LC08' in coll_id:
                    input_coll = input_coll.filter(
                        ee.Filter.gt('system:time_start',
                                     ee.Date('2013-03-24').millis()))

                def compute_lsr(image):
                    model_obj = Image.from_landsat_c2_sr(
                        sr_image=ee.Image(image), **self.model_args)
                    return model_obj.calculate(variables)

                variable_coll = variable_coll.merge(
                    ee.ImageCollection(input_coll.map(compute_lsr)))

            elif coll_id in self._landsat_c1_toa_collections:
                input_coll = ee.ImageCollection(coll_id)\
                    .filterDate(start_date, end_date)\
                    .filterBounds(self.geometry)\
                    .filterMetadata('DATA_TYPE', 'equals', 'L1TP')\
                    .filterMetadata('CLOUD_COVER_LAND', 'less_than',
                                    self.cloud_cover_max)\
                    .filterMetadata('CLOUD_COVER_LAND', 'greater_than', -0.5)

                # TODO: Need to come up with a system for applying
                #   generic filter arguments to the collections
                if coll_id in self.filter_args.keys():
                    for f in copy.deepcopy(self.filter_args[coll_id]):
                        try:
                            filter_type = f.pop('type')
                        except KeyError:
                            continue
                        if filter_type.lower() == 'equals':
                            input_coll = input_coll.filter(
                                ee.Filter.equals(**f))

                # TODO: Check if these bad images are in collection 1 SR
                # Time filters are to remove bad (L5) and pre-op (L8) images
                if 'LT05' in coll_id:
                    input_coll = input_coll.filter(
                        ee.Filter.lt('system:time_start',
                                     ee.Date('2011-12-31').millis()))
                elif 'LC08' in coll_id:
                    input_coll = input_coll.filter(
                        ee.Filter.gt('system:time_start',
                                     ee.Date('2013-03-24').millis()))

                def compute_ltoa(image):
                    model_obj = Image.from_landsat_c1_toa(
                        toa_image=ee.Image(image), **self.model_args)
                    return model_obj.calculate(variables)

                variable_coll = variable_coll.merge(
                    ee.ImageCollection(input_coll.map(compute_ltoa)))

            elif coll_id in self._landsat_c1_sr_collections:
                input_coll = ee.ImageCollection(coll_id)\
                    .filterDate(start_date, end_date)\
                    .filterBounds(self.geometry)\
                    .filterMetadata('CLOUD_COVER_LAND', 'less_than',
                                    self.cloud_cover_max)\
                    .filterMetadata('CLOUD_COVER_LAND', 'greater_than', -0.5)

                # TODO: Need to come up with a system for applying
                #   generic filter arguments to the collections
                if coll_id in self.filter_args.keys():
                    for f in copy.deepcopy(self.filter_args[coll_id]):
                        try:
                            filter_type = f.pop('type')
                        except KeyError:
                            continue
                        if filter_type.lower() == 'equals':
                            input_coll = input_coll.filter(
                                ee.Filter.equals(**f))

                # Time filters are to remove bad (L5) and pre-op (L8) images
                if 'LT05' in coll_id:
                    input_coll = input_coll.filter(
                        ee.Filter.lt('system:time_start',
                                     ee.Date('2011-12-31').millis()))
                elif 'LC08' in coll_id:
                    input_coll = input_coll.filter(
                        ee.Filter.gt('system:time_start',
                                     ee.Date('2013-03-24').millis()))

                def compute_lsr(image):
                    model_obj = Image.from_landsat_c1_sr(
                        sr_image=ee.Image(image), **self.model_args)
                    return model_obj.calculate(variables)

                variable_coll = variable_coll.merge(
                    ee.ImageCollection(input_coll.map(compute_lsr)))

            else:
                raise ValueError('unsupported collection: {}'.format(coll_id))

        return variable_coll
예제 #27
0
def find_NAIP(region, add_NDVI=True, add_NDWI=True):
    """Create annual NAIP mosaic for a given region.

    Args:
        region (object): ee.Geometry
        add_NDVI (bool, optional): Whether to add the NDVI band. Defaults to True.
        add_NDWI (bool, optional): Whether to add the NDWI band. Defaults to True.

    Returns:
        object: ee.ImageCollection
    """

    init_collection = ee.ImageCollection('USDA/NAIP/DOQQ') \
        .filterBounds(region) \
        .filterDate('2009-01-01', '2019-12-31') \
        .filter(ee.Filter.listContains("system:band_names", "N"))

    yearList = ee.List(
        init_collection.distinct(['system:time_start'
                                  ]).aggregate_array('system:time_start'))
    init_years = yearList.map(lambda y: ee.Date(y).get('year'))

    # remove duplicates
    init_years = ee.Dictionary(
        init_years.reduce(ee.Reducer.frequencyHistogram())).keys()
    years = init_years.map(lambda x: ee.Number.parse(x))

    # years = init_years.map(lambda x: x)

    # Available NAIP years with NIR band
    def NAIPAnnual(year):
        start_date = ee.Date.fromYMD(year, 1, 1)
        end_date = ee.Date.fromYMD(year, 12, 31)
        collection = init_collection.filterDate(start_date, end_date)
        # .filterBounds(geometry)
        # .filter(ee.Filter.listContains("system:band_names", "N"))
        time_start = ee.Date(
            ee.List(collection.aggregate_array(
                'system:time_start')).sort().get(0)).format('YYYY-MM-dd')
        time_end = ee.Date(
            ee.List(collection.aggregate_array('system:time_end')).sort().get(
                -1)).format('YYYY-MM-dd')
        col_size = collection.size()
        image = ee.Image(collection.mosaic().clip(region))

        if add_NDVI:
            NDVI = ee.Image(image).normalizedDifference(['N',
                                                         'R']).select(['nd'],
                                                                      ['ndvi'])
            image = image.addBands(NDVI)

        if add_NDWI:
            NDWI = ee.Image(image).normalizedDifference(['G',
                                                         'N']).select(['nd'],
                                                                      ['ndwi'])
            image = image.addBands(NDWI)

        return image.set({
            'system:time_start': time_start,
            'system:time_end': time_end,
            'tiles': col_size
        })

    # remove years with incomplete coverage
    naip = ee.ImageCollection(years.map(NAIPAnnual))
    mean_size = ee.Number(naip.aggregate_mean('tiles'))
    total_sd = ee.Number(naip.aggregate_total_sd('tiles'))
    threshold = mean_size.subtract(total_sd.multiply(1))
    naip = naip.filter(
        ee.Filter.Or(ee.Filter.gte('tiles', threshold),
                     ee.Filter.gte('tiles', 15)))
    naip = naip.filter(ee.Filter.gte('tiles', 7))

    naip_count = naip.size()
    naip_seq = ee.List.sequence(0, naip_count.subtract(1))

    def set_index(index):
        img = ee.Image(naip.toList(naip_count).get(index))
        return img.set({'system:uid': ee.Number(index).toUint8()})

    naip = naip_seq.map(set_index)

    return ee.ImageCollection(naip)
예제 #28
0
    def interpolate(self,
                    variables=None,
                    t_interval='custom',
                    interp_method='linear',
                    interp_days=32,
                    **kwargs):
        """

        Parameters
        ----------
        variables : list, optional
            List of variables that will be returned in the Image Collection.
            If variables is not set here it must be specified in the class
            instantiation call.
        t_interval : {'daily', 'monthly', 'annual', 'custom'}, optional
            Time interval over which to interpolate and aggregate values
            (the default is 'monthly').
        interp_method : {'linear}, optional
            Interpolation method (the default is 'linear').
        interp_days : int, str, optional
            Number of extra days before the start date and after the end date
            to include in the interpolation calculation. (the default is 32).
        kwargs : dict, optional

        Returns
        -------
        ee.ImageCollection

        Raises
        ------
        ValueError for unsupported input parameters
        ValueError for negative interp_days values
        TypeError for non-integer interp_days

        Notes
        -----
        Not all variables can be interpolated to new time steps.
        Variables like reference ET are simply summed whereas ET fraction is
            computed from the interpolated/aggregated values.

        """
        # Check that the input parameters are valid
        if t_interval.lower() not in ['daily', 'monthly', 'annual', 'custom']:
            raise ValueError('unsupported t_interval: {}'.format(t_interval))
        elif interp_method.lower() not in ['linear']:
            raise ValueError(
                'unsupported interp_method: {}'.format(interp_method))

        if type(interp_days) is str and utils.is_number(interp_days):
            interp_days = int(interp_days)
        elif not type(interp_days) is int:
            raise TypeError('interp_days must be an integer')
        elif interp_days <= 0:
            raise ValueError('interp_days must be a positive integer')

        # Does it make sense to use the class variable list if not set?
        if not variables:
            if self.variables:
                variables = self.variables
            else:
                raise ValueError('variables parameter must be set')

        # Adjust start/end dates based on t_interval
        # Increase the date range to fully include the time interval
        start_dt = datetime.datetime.strptime(self.start_date, '%Y-%m-%d')
        end_dt = datetime.datetime.strptime(self.end_date, '%Y-%m-%d')
        if t_interval.lower() == 'annual':
            start_dt = datetime.datetime(start_dt.year, 1, 1)
            # Covert end date to inclusive, flatten to beginning of year,
            # then add a year which will make it exclusive
            end_dt -= relativedelta(days=+1)
            end_dt = datetime.datetime(end_dt.year, 1, 1)
            end_dt += relativedelta(years=+1)
        elif t_interval.lower() == 'monthly':
            start_dt = datetime.datetime(start_dt.year, start_dt.month, 1)
            end_dt -= relativedelta(days=+1)
            end_dt = datetime.datetime(end_dt.year, end_dt.month, 1)
            end_dt += relativedelta(months=+1)
        start_date = start_dt.strftime('%Y-%m-%d')
        end_date = end_dt.strftime('%Y-%m-%d')

        # The start/end date for the interpolation include more days
        # (+/- interp_days) than are included in the reference ET collection
        interp_start_dt = start_dt - datetime.timedelta(days=interp_days)
        interp_end_dt = end_dt + datetime.timedelta(days=interp_days)
        interp_start_date = interp_start_dt.date().isoformat()
        interp_end_date = interp_end_dt.date().isoformat()

        # Update model_args if reference ET parameters were passed to interpolate
        # Intentionally using model_args (instead of self.et_reference_source, etc.) in
        #   this function since model_args is passed to Image class in _build()
        # if 'et' in variables or 'et_reference' in variables:
        if ('et_reference_source' in kwargs.keys() and \
                kwargs['et_reference_source'] is not None):
            self.model_args['et_reference_source'] = kwargs[
                'et_reference_source']
        if ('et_reference_band' in kwargs.keys() and \
                kwargs['et_reference_band'] is not None):
            self.model_args['et_reference_band'] = kwargs['et_reference_band']
        if ('et_reference_factor' in kwargs.keys() and \
                kwargs['et_reference_factor'] is not None):
            self.model_args['et_reference_factor'] = kwargs[
                'et_reference_factor']
        if ('et_reference_resample' in kwargs.keys() and \
                kwargs['et_reference_resample'] is not None):
            self.model_args['et_reference_resample'] = kwargs[
                'et_reference_resample']

        # Check that all reference ET parameters were set
        # print(self.model_args)
        for et_reference_param in [
                'et_reference_source', 'et_reference_band',
                'et_reference_factor'
        ]:
            if et_reference_param not in self.model_args.keys():
                raise ValueError('{} was not set'.format(et_reference_param))
            elif not self.model_args[et_reference_param]:
                raise ValueError('{} was not set'.format(et_reference_param))

        if type(self.model_args['et_reference_source']) is str:
            # Assume a string source is an single image collection ID
            #   not an list of collection IDs or ee.ImageCollection
            daily_et_ref_coll_id = self.model_args['et_reference_source']
            daily_et_ref_coll = ee.ImageCollection(daily_et_ref_coll_id)\
                .filterDate(start_date, end_date)\
                .select([self.model_args['et_reference_band']], ['et_reference'])
        # elif isinstance(self.model_args['et_reference_source'], computedobject.ComputedObject):
        #     # Interpret computed objects as image collections
        #     daily_et_ref_coll = self.model_args['et_reference_source'] \
        #         .filterDate(self.start_date, self.end_date) \
        #         .select([self.model_args['et_reference_band']])
        else:
            raise ValueError('unsupported et_reference_source: {}'.format(
                self.model_args['et_reference_source']))

        # Scale reference ET images (if necessary)
        # CGM - Resampling is not working correctly so not including for now
        if (self.model_args['et_reference_factor']
                and self.model_args['et_reference_factor'] != 1):

            def et_reference_adjust(input_img):
                return input_img \
                    .multiply(self.model_args['et_reference_factor']) \
                    .copyProperties(input_img) \
                    .set({'system:time_start': input_img.get('system:time_start')})

            daily_et_ref_coll = daily_et_ref_coll.map(et_reference_adjust)

        # Initialize variable list to only variables that can be interpolated
        interp_vars = list(set(self._interp_vars) & set(variables))

        # To return ET, the ET fraction must be interpolated
        if 'et' in variables and 'et_fraction' not in interp_vars:
            interp_vars.append('et_fraction')

        # With the current interpolate.daily() function,
        #   something has to be interpolated in order to return et_reference
        if 'et_reference' in variables and 'et_fraction' not in interp_vars:
            interp_vars.append('et_fraction')

        # The time band is always needed for interpolation
        interp_vars.append('time')

        # Count will be determined using the aggregate_coll image masks
        if 'count' in variables:
            interp_vars.append('mask')
            # interp_vars.remove('count')

        # Build initial scene image collection
        scene_coll = self._build(variables=interp_vars,
                                 start_date=interp_start_date,
                                 end_date=interp_end_date)

        # For count, compute the composite/mosaic image for the mask band only
        if 'count' in variables:
            aggregate_coll = openet.core.interpolate.aggregate_to_daily(
                image_coll=scene_coll.select(['mask']),
                start_date=start_date,
                end_date=end_date)

            # The following is needed because the aggregate collection can be
            #   empty if there are no scenes in the target date range but there
            #   are scenes in the interpolation date range.
            # Without this the count image will not be built but the other
            #   bands will be which causes a non-homogenous image collection.
            aggregate_coll = aggregate_coll.merge(
                ee.Image.constant(0).rename(['mask']).set(
                    {'system:time_start': ee.Date(start_date).millis()}))

        # Including count/mask causes problems in interpolate.daily() function.
        # Issues with mask being an int but the values need to be double.
        # Casting the mask band to a double would fix this problem also.
        if 'mask' in interp_vars:
            interp_vars.remove('mask')

        # Interpolate to a daily time step
        # NOTE: the daily function is not computing ET (ETf x ETr)
        #   but is returning the target (ETr) band
        daily_coll = openet.core.interpolate.daily(
            target_coll=daily_et_ref_coll,
            source_coll=scene_coll.select(interp_vars),
            interp_method=interp_method,
            interp_days=interp_days,
        )

        # Compute ET from ET fraction and reference ET (if necessary)
        # if 'et' in variables or 'et_fraction' in variables:
        def compute_et(img):
            """This function assumes reference ET and ET fraction are present"""
            et_img = img.select(['et_fraction'])\
                .multiply(img.select(['et_reference']))
            return img.addBands(et_img.rename('et'))

        daily_coll = daily_coll.map(compute_et)

        interp_properties = {
            'cloud_cover_max': self.cloud_cover_max,
            'collections': ', '.join(self.collections),
            'interp_days': interp_days,
            'interp_method': interp_method,
            'model_name': openet.ssebop.MODEL_NAME,
            'model_version': openet.ssebop.__version__,
        }
        interp_properties.update(self.model_args)

        def aggregate_image(agg_start_date, agg_end_date, date_format):
            """Aggregate the daily images within the target date range

            Parameters
            ----------
            agg_start_date: str
                Start date (inclusive).
            agg_end_date : str
                End date (exclusive).
            date_format : str
                Date format for system:index (uses EE JODA format).

            Returns
            -------
            ee.Image

            Notes
            -----
            Since this function takes multiple inputs it is being called
            for each time interval by separate mappable functions

            """
            if 'et' in variables or 'et_fraction' in variables:
                et_img = daily_coll.filterDate(agg_start_date, agg_end_date) \
                    .select(['et']).sum()
            if 'et_reference' in variables or 'et_fraction' in variables:
                # et_reference_img = daily_et_ref_coll \
                et_reference_img = daily_coll \
                    .filterDate(agg_start_date, agg_end_date) \
                    .select(['et_reference']).sum()

            image_list = []
            if 'et' in variables:
                image_list.append(et_img.float())
            if 'et_reference' in variables:
                image_list.append(et_reference_img.float())
            if 'et_fraction' in variables:
                # Compute average et fraction over the aggregation period
                image_list.append(
                    et_img.divide(et_reference_img).rename(['et_fraction'
                                                            ]).float())
            if 'ndvi' in variables:
                # Compute average ndvi over the aggregation period
                ndvi_img = daily_coll \
                    .filterDate(agg_start_date, agg_end_date) \
                    .mean().select(['ndvi']).float()
                image_list.append(ndvi_img)
            if 'count' in variables:
                count_img = aggregate_coll \
                    .filterDate(agg_start_date, agg_end_date) \
                    .select(['mask']).count().rename('count').uint8()
                image_list.append(count_img)

            return ee.Image(image_list) \
                .set(interp_properties) \
                .set({
                    'system:index': ee.Date(agg_start_date).format(date_format),
                    'system:time_start': ee.Date(agg_start_date).millis(),
                })

        # Combine input, interpolated, and derived values
        if t_interval.lower() == 'daily':

            def aggregate_daily(daily_img):
                # CGM - Double check that this time_start is a 0 UTC time.
                # It should be since it is coming from the interpolate source
                #   collection, but what if source is GRIDMET (+6 UTC)?
                agg_start_date = ee.Date(daily_img.get('system:time_start'))
                # CGM - This calls .sum() on collections with only one image
                return aggregate_image(
                    agg_start_date=agg_start_date,
                    agg_end_date=ee.Date(agg_start_date).advance(1, 'day'),
                    date_format='YYYYMMdd')

            return ee.ImageCollection(daily_coll.map(aggregate_daily))

        elif t_interval.lower() == 'monthly':

            def month_gen(iter_start_dt, iter_end_dt):
                iter_dt = iter_start_dt
                # Conditional is "less than" because end date is exclusive
                while iter_dt < iter_end_dt:
                    yield iter_dt.strftime('%Y-%m-%d')
                    iter_dt += relativedelta(months=+1)

            month_list = ee.List(list(month_gen(start_dt, end_dt)))

            def aggregate_monthly(agg_start_date):
                return aggregate_image(
                    agg_start_date=agg_start_date,
                    agg_end_date=ee.Date(agg_start_date).advance(1, 'month'),
                    date_format='YYYYMM')

            return ee.ImageCollection(month_list.map(aggregate_monthly))

        elif t_interval.lower() == 'annual':

            def year_gen(iter_start_dt, iter_end_dt):
                iter_dt = iter_start_dt
                while iter_dt < iter_end_dt:
                    yield iter_dt.strftime('%Y-%m-%d')
                    iter_dt += relativedelta(years=+1)

            year_list = ee.List(list(year_gen(start_dt, end_dt)))

            def aggregate_annual(agg_start_date):
                return aggregate_image(
                    agg_start_date=agg_start_date,
                    agg_end_date=ee.Date(agg_start_date).advance(1, 'year'),
                    date_format='YYYY')

            return ee.ImageCollection(year_list.map(aggregate_annual))

        elif t_interval.lower() == 'custom':
            # Returning an ImageCollection to be consistent
            return ee.ImageCollection(
                aggregate_image(agg_start_date=start_date,
                                agg_end_date=end_date,
                                date_format='YYYYMMdd'))
'''

# %%
roi = ee.Geometry.Point([-99.2182, 46.7824])

# find images acquired during June and July
collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') \
    .filterBounds(roi) \
    .filter(ee.Filter.calendarRange(6, 7, 'month')) \
    .sort('DATE_ACQUIRED')

print(collection.size().getInfo())

first = collection.first()
propertyNames = first.propertyNames()
print(propertyNames.getInfo())

time_start = ee.Date(first.get('system:time_start')).format("YYYY-MM-dd")
print(time_start.getInfo())

# %%
'''
## Display Earth Engine data layers 

'''


# %%
Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True)
Map
예제 #30
0
			print(outarr[0])
			print('--Writing reflectance to csv for ', roiID)

			with open('Processed/Reflectance/reflectL8_'+roiID+'.csv', "a", newline="") as f:
				writer = csv.writer(f)
				#~ ##writer.writerow(['date', 'blue','red','nir','green','LID'])    #only for new file
				for item in outarr:
					#Write item to outcsv
					writer.writerow([int(item[0]), item[1], item[2],item[3],item[4],item[5]])
		else:
			print('No new imagery found in last 20 days for', roiID)
			
	else:
		print('No new imagery found in last 20 days for', roiID)	
		
		
#### Options###########
edate = datetime.datetime.now()
sdate = datetime.datetime.now() + datetime.timedelta(days=-20)

endDate = ee.Date(edate)  #ee.Date(datttte()) 
startDate = ee.Date(sdate) # ee.Date('1987-01-01')
print('Checking for new imagery from: {} to {}'.format(sdate.strftime('%Y-%m-%d'),edate.strftime('%Y-%m-%d')))


downloadL8(baruria,startDate,endDate,'baruria')
downloadL8(bahadurabad,startDate,endDate,'bahadurabad')
downloadL8(hardinge_bridge,startDate,endDate,'hardinge_bridge')
downloadL8(mawa,startDate,endDate,'mawa')
downloadL8(naria,startDate,endDate,'naria')