def __init__(self, num_anchors=9, num_classes=80, compound_coef=0, load_weights=False, **kwargs): super(EfficientDetBackbone, self).__init__() self.compound_coef = compound_coef self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384] self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8] self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536] self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5] self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.] self.aspect_ratios = [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)] self.num_scales = 3 conv_channel_coef = { # the channels of P3/P4/P5. 0: [40, 112, 320], 1: [40, 112, 320], 2: [48, 120, 352], 3: [48, 136, 384], 4: [56, 160, 448], 5: [64, 176, 512], 6: [72, 200, 576], } num_anchors = len(self.aspect_ratios) * self.num_scales self.bifpn = nn.Sequential(*[ BiFPN(self.fpn_num_filters[self.compound_coef], conv_channel_coef[compound_coef], True if _ == 0 else False, attention=True if compound_coef < 6 else False) for _ in range(self.fpn_cell_repeats[compound_coef]) ]) self.num_classes = num_classes self.regressor = Regressor( in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_layers=self.box_class_repeats[self.compound_coef]) self.classifier = Classifier( in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_classes=num_classes, num_layers=self.box_class_repeats[self.compound_coef]) self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef], **kwargs) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() self.backbone_net = EfficientNet(compound_coef, load_weights)
def __init__(self, num_classes=80, compound_coef=0, load_weights=False, onnx_export=False, **kwargs): super(EfficientDetBackbone, self).__init__() self.compound_coef = compound_coef self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6] self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384] self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8] self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536] self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5] self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.] self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]) self.num_scales = len( kwargs.get('scales', [2**0, 2**(1.0 / 3.0), 2**(2.0 / 3.0)])) conv_channel_coef = { # the channels of P3/P4/P5. 0: [40, 112, 320], 1: [40, 112, 320], 2: [48, 120, 352], 3: [48, 136, 384], 4: [56, 160, 448], 5: [64, 176, 512], 6: [72, 200, 576], 7: [72, 200, 576], } num_anchors = len(self.aspect_ratios) * self.num_scales self.bifpn = nn.Sequential(*[ BiFPN(self.fpn_num_filters[self.compound_coef], conv_channel_coef[compound_coef], True if _ == 0 else False, onnx_export=onnx_export, attention=True if compound_coef < 6 else False) for _ in range(self.fpn_cell_repeats[compound_coef]) ]) self.num_classes = num_classes self.regressor = Regressor( in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_layers=self.box_class_repeats[self.compound_coef], onnx_export=onnx_export) self.classifier = Classifier( in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_classes=num_classes, num_layers=self.box_class_repeats[self.compound_coef], onnx_export=onnx_export) self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef], **kwargs) self.backbone_net = EfficientNet( self.backbone_compound_coef[compound_coef], load_weights)
def __init__(self, num_classes=80, compound_coef=0, load_weights=False, **kwargs): super(EfficientDetBackbone, self).__init__() self.compound_coef = compound_coef self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6, 7] self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384, 384] self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8, 8] self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536] self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5, 5] self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6] # self.anchor_scale不同Stride级别的金字塔尺度,都是两倍两倍缩放 self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5., 4.] self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]) # 同一个金字塔尺度上再分3个小尺度3个小比例 self.num_scales = len( kwargs.get('scales', [2**0, 2**(1.0 / 3.0), 2**(2.0 / 3.0)])) conv_channel_coef = { # the channels of P3/P4/P5. 0: [40, 112, 320], 1: [40, 112, 320], 2: [48, 120, 352], 3: [48, 136, 384], 4: [56, 160, 448], 5: [64, 176, 512], 6: [72, 200, 576], 7: [72, 200, 576], 8: [80, 224, 640], } num_anchors = len(self.aspect_ratios) * self.num_scales # print(len(self.aspect_ratios)) # print(self.num_scales) # exit() self.bifpn = nn.Sequential(*[ BiFPN(self.fpn_num_filters[self.compound_coef], conv_channel_coef[compound_coef], True if _ == 0 else False, attention=True if compound_coef < 6 else False, use_p8=compound_coef > 7) for _ in range(self.fpn_cell_repeats[compound_coef]) ]) self.num_classes = num_classes self.regressor = Regressor( in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_layers=self.box_class_repeats[self.compound_coef], pyramid_levels=self.pyramid_levels[self.compound_coef]) self.classifier = Classifier( in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_classes=num_classes, num_layers=self.box_class_repeats[self.compound_coef], pyramid_levels=self.pyramid_levels[self.compound_coef]) self.anchors = Anchors( anchor_scale=self.anchor_scale[compound_coef], pyramid_levels=( torch.arange(self.pyramid_levels[self.compound_coef]) + 3).tolist(), **kwargs) self.backbone_net = EfficientNet( self.backbone_compound_coef[compound_coef], load_weights)