def ego_ol_test():
    '''
	Open-loop test of truck-trailer simulation. Takes the data from a Simpack
	CSV and simulates the open-loop output using the Simpack-recorded control
	signals. Plots the resulting driven path against the Simpack-recorded path.
	'''
    x_true, y_true, t, vel, steer_angle = read_path_from_original_simpack_csv(
        '/Users/Zeke/Documents/MATLAB/Model Validation/P4_TCO_Sleeper__FE17_Trailer/DLC/Benchmark_DLC_31ms_pandas.csv'
    )

    ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)

    x = []
    y = []
    delta = []
    th1 = []
    th2 = []

    for i in range(0, len(t)):
        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
            [vel[i], steer_angle[i]])
        x.append(xt)
        y.append(yt)
        delta.append(deltat)
        th1.append(th1t)
        th2.append(th2t)

    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.show()
def test_network(network, x_true, y_true, vel, t):
    # Initialize truck simulator and control objects
    ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
    controller = NN2Control()
    pid = StanleyPID()

    x = []
    th1t = 0
    th2t = 0
    #do some random stuff
    ego2 = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)

    for i in range(0, len(t)):

        network = network.float()
        state = ego.convert_world_state_to_front()
        state1 = ego2.convert_world_state_to_front()
        ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
            t[i], state, x_true, y_true, vel, th1t - th2t, network)
        ctrl_delta_pid, ctrl_vel_pid, err_pid, interr_pid, differr_pid = pid.calc_steer_control(
            t[i], state1, x_true, y_true, vel)
        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
            [ctrl_vel, ctrl_delta])
        x1, y1, delt, tha, thb = ego2.simulate_timestep(
            [ctrl_vel_pid, ctrl_delta_pid])
        x.append(err[0] * err[0])

    x = sum(x) / len(t)
    return x
def random_path_test():
    rpg = RandomPathGenerator()
    x_true, y_true, t, vel = rpg.get_random_path()
    ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
    pid = StanleyPID(k_crosstrack={
        'P': 5,
        'I': 0.1,
        'D': 0.5
    },
                     k_heading={
                         'P': -0.5,
                         'I': 0,
                         'D': 0
                     })

    x = []
    y = []
    delta = []
    th1 = []
    th2 = []
    ct_err = []
    hd_err = []

    for i in range(0, len(t)):
        state = ego.convert_world_state_to_front()
        ctrl_delta, ctrl_vel, err, err_int, err_diff = pid.calc_steer_control(
            t[i], state, x_true, y_true, vel)
        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
            [ctrl_vel, ctrl_delta])
        x.append(xt)
        y.append(yt)
        delta.append(deltat)
        th1.append(th1t)
        th2.append(th2t)
        ct_err.append(err[0])
        hd_err.append(err[1])

    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.show()

    plt.plot(t, ct_err)
    plt.show()
    plt.plot(t, hd_err)
    plt.show()
def pid_test():
    '''
	Test for the Stanley PID controller. Takes the path data from a Simpack CSV
	and uses it as the desired path for the controller to follow. Plots the 
	resulting driven path against the Simpack-recorded path.
	'''
    #	x_true,y_true,t,vel,steer_angle = read_path_from_original_simpack_csv('/Users/Zeke/Documents/MATLAB/Model Validation/P4_TCO_Sleeper__FE17_Trailer/DLC/Benchmark_DLC_31ms_pandas.csv')
    x_true, y_true, t, vel, steer_angle = read_path_from_original_simpack_csv(
        '/Users/Zeke/Documents/MATLAB/Model Validation/P4_TCO_Sleeper__FE17_Trailer/SScorner_var_spd/left/Benchmark_SScorner_80m_left_pandas.csv'
    )

    ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
    pid = StanleyPID(k_crosstrack={
        'P': 5,
        'I': 0.1,
        'D': 0.1
    },
                     k_heading={
                         'P': -0.5,
                         'I': 0,
                         'D': 0
                     })

    x = []
    y = []
    delta = []
    th1 = []
    th2 = []

    for i in range(0, len(t)):
        state = ego.convert_world_state_to_front()
        ctrl_delta, ctrl_vel, err, err_int, err_diff = pid.calc_steer_control(
            t[i], state, x_true, y_true, vel)
        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
            [ctrl_vel, ctrl_delta])
        x.append(xt)
        y.append(yt)
        delta.append(deltat)
        th1.append(th1t)
        th2.append(th2t)

    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.show()
def initial_displacement_test(network):
    Benchmark1 = pd.read_csv('Benchmark_DLC_31ms_reduced.csv',
                             sep=',',
                             header=0)
    Benchmark1 = Benchmark1.values
    x_true = Benchmark1[:, 0]
    y_true = Benchmark1[:, 1]
    t = Benchmark1[:, 2]
    vel = Benchmark1[:, 3]

    disp = np.linspace(0, 10, num=20)

    pid_fitness = np.zeros(len(disp))
    nn_fitness = np.zeros(len(disp))
    for i in range(0, len(disp)):
        print('{} of {}'.format(i, len(disp)))
        # Start a new PID controller and ego_sims for both controllers
        pid = StanleyPID()
        nn = NN2Control()
        ego_pid = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        ego_nn = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)

        pid_fitness[i] = fitness_from_simulation_loop(pid,
                                                      ego_pid,
                                                      t,
                                                      x_true,
                                                      y_true + disp[i],
                                                      vel,
                                                      net=None)
        nn_fitness[i] = fitness_from_simulation_loop(nn,
                                                     ego_nn,
                                                     t,
                                                     x_true,
                                                     y_true + disp[i],
                                                     vel,
                                                     net=network)
    plt.plot(disp, pid_fitness, ls='--')
    plt.plot(disp, nn_fitness)
    plt.xlabel('Initial lateral displacement from path (m)')
    plt.ylabel('Sum squared tracking error, $m^2$\n(lower is better)')
    plt.ylim(0, 5000)
    plt.legend(['PID', 'Neurocontroller'])
    plt.show()
def basic_fitness_comparison(network, num_tests=10):
    # Initialize memory for fitness evaluation
    pid_fitness = np.zeros(num_tests)
    nn_fitness = 200 * np.random.random(num_tests)
    rpg = RandomPathGenerator()
    for i in range(0, num_tests):
        print('{} of {}'.format(i, num_tests))
        # Generate a random path
        x_true, y_true, t, vel = rpg.get_harder_path(end_time=15)
        # Start a new PID controller and ego_sims for both controllers
        pid = StanleyPID()
        nn = NN2Control()
        ego_pid = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        ego_nn = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        pid_fitness[i] = fitness_from_simulation_loop(pid,
                                                      ego_pid,
                                                      t,
                                                      x_true,
                                                      y_true,
                                                      vel,
                                                      net=None)
        nn_fitness[i] = fitness_from_simulation_loop(nn,
                                                     ego_nn,
                                                     t,
                                                     x_true,
                                                     y_true,
                                                     vel,
                                                     net=network)
    plt.boxplot(np.divide(nn_fitness, pid_fitness))
    plt.ylabel('Fitness relative to PID\n(lower is better)')
    plt.xticks(
        [1],
        ['Neurocontroller'],
    )
    plt.show()
    # Plot without outliers
    plt.boxplot(np.divide(nn_fitness, pid_fitness), showfliers=False)
    plt.ylabel('Fitness relative to PID\n(lower is better)')
    plt.xticks([1], ['Neurocontroller'])
    plt.show()
def random_path_pid(output_to_csv=True, csv_filename='random_path_pid.csv'):
    rpg = RandomPathGenerator()
    x_true, y_true, t, vel = rpg.get_random_path()
    ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
    pid = StanleyPID()

    ctrl_delta_out, ctrl_vel_out, ct_err, hd_err, ct_err_int, hd_err_int, \
    ct_err_diff, hd_err_diff = [], [], [], [], [], [], [], []

    for i in range(0, len(t)):
        state = ego.convert_world_state_to_front()
        ctrl_delta, ctrl_vel, err, err_int, err_diff = pid.calc_steer_control(
            t[i], state, x_true, y_true, vel)
        ego.simulate_timestep([ctrl_vel, ctrl_delta])
        if not np.isnan(err[0]):
            ctrl_delta_out.append(ctrl_delta)
            ctrl_vel_out.append(ctrl_vel)
            ct_err.append(err[0])
            hd_err.append(err[1])
            ct_err_int.append(err_int[0])
            hd_err_int.append(err_int[1])
            ct_err_diff.append(err_diff[0])
            hd_err_diff.append(err_diff[1])

    csv_output = {
        'Cross-Track Error (m)': ct_err,
        'Heading Error (rad)': hd_err,
        'Desired Velocity (m/s)': ctrl_vel_out,
        'Command Steer Angle (rad)': ctrl_delta_out,
        'Integral of CT Error': ct_err_int,
        'Integral of Heading Error': hd_err_int,
        'Derivative of CT Error': ct_err_diff,
        'Derivative of Heading Error': hd_err_diff
    }
    df = pd.DataFrame(csv_output)
    df.to_csv(csv_filename, index=False)
    csv_output = {'Path x-coordinates': x_true, 'Path y-coordinates': y_true}
    df = pd.DataFrame(csv_output)
    df.to_csv(csv_filename[:-4] + '_path.csv', index=False)
def train_network(network, k_crosstrack, k_heading):
    rpg = RandomPathGenerator()
    x_true, y_true, t, vel = rpg.get_harder_path()
    xt1 = x_true
    yt1 = y_true
    t12 = t
    vel1 = vel
    ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
    controller = NN2Control()
    pid = StanleyPID(k_crosstrack=k_crosstrack, k_heading=k_heading)
    pid2 = StanleyPID(k_crosstrack=k_crosstrack, k_heading=k_heading)
    learning_rate = 0.01
    x = []
    y = []
    xp = []
    yp = []
    delta = []
    th1 = []
    th2 = []
    th1t = 0
    th2t = 0
    running_loss = 0
    #do some  random stuff
    ego2 = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)

    for i in range(0, len(t)):

        network = network.float()
        state = ego.convert_world_state_to_front()
        state1 = ego2.convert_world_state_to_front()
        ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
            t[i], state, x_true, y_true, vel, th1t - th2t, network)
        ctrl_delta_pid, ctrl_vel_pid, err_pid, interr_pid, differr_pid = pid.calc_steer_control(
            t[i], state1, x_true, y_true, vel)

        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
            [ctrl_vel, ctrl_delta])
        x1, y1, delt, tha, thb = ego2.simulate_timestep(
            [ctrl_vel_pid, ctrl_delta_pid])
        xp.append(x1)
        yp.append(y1)
        x.append(xt)
        y.append(yt)
        delta.append(deltat)
        th1.append(th1t)
        th2.append(th2t)

        inputs = np.concatenate((err, ctrl_vel, interr[0], differr[0]),
                                axis=None)
        inputs = np.append(inputs, th1t - th2t)

        network_input = torch.tensor(inputs)

        network = network.double()

        out = network(network_input)

    #print(running_loss)
    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.plot(xp, yp, 'g--')
    plt.legend(['Network Performance', 'True Path', 'PID Performance'])
    plt.xlabel('X location, (m)')
    plt.ylabel('Y Location, (m)')
    plt.show()

    running_loss = 0
    x = []
    y = []
    xp = []
    yp = []
    delta = []
    th1 = []
    th2 = []
    pl = 0
    plot_loss = np.zeros([5, 100])
    loss_time = list(range(0, 20000, 200))
    MSE = []
    MSE1 = 0
    th1t = 0
    th2t = 0
    temp_controller1 = pickle.loads(pickle.dumps(network))
    temp_controller2 = pickle.loads(pickle.dumps(network))
    temp_controller3 = pickle.loads(pickle.dumps(network))
    temp_controller4 = pickle.loads(pickle.dumps(network))
    networks = [
        network, temp_controller1, temp_controller2, temp_controller3,
        temp_controller4
    ]
    for j in range(5):
        pl = 0
        for i in range(20000):
            nwork = networks[j]
            pid_list = pid.control_from_random_error()
            input1 = pid_list[0:3]
            input2 = pid_list[4:]
            input1 = np.concatenate((input1, input2), axis=0)
            input1 = np.append(input1, np.pi * np.random.random() - np.pi / 2)
            #print(input1)
            target1 = pid_list[3]
            network_input = torch.tensor(input1)
            #print(network_input)
            network_target = torch.tensor(target1)
            network_target = network_target.double()
            nwork = nwork.double()
            #print(network_input)
            out = nwork(network_input)
            nwork.zero_grad()
            criterion = nn.MSELoss()
            loss = criterion(out, network_target)
            loss.backward()
            pl += loss.item()
            if (i % 200 == 199):
                print(int((i + 1) / 200 - 1))
                plot_loss[j][int((i + 1) / 200 - 1)] = (pl / 200)
                pl = 0

            running_loss += loss.item()

            for f in nwork.parameters():
                f.data.sub_(f.grad.data * learning_rate)
    #print(running_loss)
    plot_loss_avg = np.average(plot_loss, axis=0)
    plot_loss_std = np.std(plot_loss, axis=0)
    #plt.plot(loss_time,plot_loss)
    plt.errorbar(loss_time,
                 plot_loss_avg,
                 yerr=plot_loss_std,
                 marker='s',
                 capsize=5)
    plt.xlabel('Iteration Number')
    plt.ylabel('Average Loss of Past 200 Iterations, (rad)')
    plt.show()
    #follow the path
    running_loss = 0

    ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
    ego2 = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
    controller = NN2Control()
    pid = StanleyPID(k_crosstrack=k_crosstrack, k_heading=k_heading)
    pid2 = StanleyPID(k_crosstrack=k_crosstrack, k_heading=k_heading)
    pl = 0
    plot_loss = []
    for i in range(0, len(t)):
        network = network.float()
        state = ego.convert_world_state_to_front()
        state1 = ego2.convert_world_state_to_front()
        ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
            t[i], state, x_true, y_true, vel, th1t - th2t, network)
        ctrl_delta_pid, ctrl_vel_pid, err_pid, interr_pid, differr_pid = pid2.calc_steer_control(
            t[i], state, x_true, y_true, vel)
        ctrl_delta_pid1, ctrl_vel_pid1, err_pid1, interr_pid1, differr_pid1 = pid.calc_steer_control(
            t[i], state1, x_true, y_true, vel)
        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
            [ctrl_vel, ctrl_delta])
        x1, y1, delt, tha, thb = ego2.simulate_timestep(
            [ctrl_vel_pid1, ctrl_delta_pid1])
        xp.append(x1)
        yp.append(y1)
        x.append(xt)
        y.append(yt)
        delta.append(deltat)
        th1.append(th1t)
        th2.append(th2t)
        inputs = np.concatenate((err, ctrl_vel, interr[0], differr[0]),
                                axis=None)
        inputs = np.append(inputs, th1t - th2t)
        network_input = torch.tensor(inputs)
        network_target = torch.tensor(ctrl_delta_pid)
        network_target = network_target.double()
        network = network.double()
        out = network(network_input)
        network.zero_grad()
        criterion = nn.MSELoss()
        loss = criterion(out, network_target)
        loss.backward()
        if (i % len(t) / 20) == (len(t) / 20 - 1):
            plot_loss.append(pl / len(t) * 20)
            loss_time.append(i)
            pl = 0
        running_loss += loss.item()
        for f in network.parameters():
            f.data.sub_(f.grad.data * learning_rate)
    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.plot(xp, yp, 'g--')
    plt.legend(['Network Performance', 'True Path', 'PID Performance'])
    plt.xlabel('X location, (m)')
    plt.ylabel('Y Location, (m)')
    plt.show()
def main():
    network = train_nn_from_pid()

    #Read in the benchmark paths that we will use
    Benchmark1 = pd.read_csv('Benchmark_DLC_31ms_reduced.csv',
                             sep=',',
                             header=0)
    Benchmark1 = Benchmark1.values
    Benchmark2 = pd.read_csv('Benchmark_SScorner_80m_left_reduced.csv',
                             sep=',',
                             header=0)
    Benchmark2 = Benchmark2.values
    Benchmark3 = pd.read_csv('Benchmark_SScorner_500m_left_25ms_reduced.csv',
                             sep=',',
                             header=0)
    Benchmark3 = Benchmark3.values
    '''$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
    for  k in range(5):
        thing_range=list(range(50))
        np.random.shuffle(thing_range)
        total_loss=0
        for i in thing_range:
            running_loss=0
            for j in range(len(PID_Data)):
                #print(np.shape(input1))
                #print(network.parameters())
                #print(network.fc1.weight.data)
                #print(network.fc3.weight.data)
                #print(j)
                network_input=torch.tensor(input1[j])
                #print(network_input)
                network_target=torch.tensor(target1[j])
                network_target=network_target.double()
                network= network.double()
                
                out=network(network_input)
                network.zero_grad()
                criterion = nn.MSELoss()
                loss = criterion(out, network_target)
                loss.backward()
                running_loss += loss.item()
                #print(out.data,network_target.data, out.data-network_target.data)
                #print(loss.item())
                for f in network.parameters():
                    f.data.sub_(f.grad.data * learning_rate)
            print('[%5d] loss: %.3f' % (i + 1, running_loss))
            #if running_loss >= 5:
                #input('press  enter')
            total_loss+=running_loss
            PID_Data=pd.read_csv('random_path_pid_more_output_'+str(i)+'.csv',sep=',',header=0)
        #print(PID_Data)
            
            PID_Data=PID_Data.values
            np.random.shuffle(PID_Data)
            input1=PID_Data[:,0:2]
            input2=PID_Data[:,4:]
            input1=np.concat enate((input1,input2),axis=1)
        #print(input1)
            target1=PID_Data[:,3]
        print('total loss this set: ', total_loss)
        #print('[%5d] loss: %.3f' %
        #(i + 1, running_loss))
    '''

    #Train the network until it is sufficient, asking the human operator for input on whether the point it reached  is  good enough
    '''
    network=network.float()
    for i in range(10):
        train_network(network)
        a=input('is this good enough?')
        if a=='1':
            break
    '''
    '''
    test_suite.basic_fitness_comparison(network)
    test_suite.trailer_length_variation_test(network)
    test_suite.trailer_mass_variation_test(network)
    test_suite.trailer_stiffness_variation_test(network)
    test_suite.noisy_signal_test(network)
    test_suite.initial_displacement_test(network)
    '''
    #Initialize varriables to run the first benchmark test  on the PID mimicking controller
    network = network.float()

    controller = NN2Control()
    x_true = Benchmark1[:, 0]
    y_true = Benchmark1[:, 1]
    t = Benchmark1[:, 2]
    vel = Benchmark1[:, 3]
    xp = []
    yp = []
    x = []
    y = []
    pid = StanleyPID()

    #Run the same benchmark on both the PID controller and the PID mimicking network and compare  the two
    for i in range(2):
        ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        print('controller: ', i)
        th1t = 0
        th2t = 0
        th1 = []
        th2 = []
        x_truck = []
        y_truck = []
        for j in range(len(t)):
            if i == 1:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = pid.calc_steer_control(
                    t[i], state, x_true, y_true, vel)
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                xp.append(xt)
                yp.append(yt)
            else:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
                    t[i], state, x_true, y_true, vel, th1t - th2t, network)
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                x.append(xt)
                y.append(yt)
        if i == 1:
            pid_fitness, CTerr = calc_off_tracking(x_truck, y_truck, th1, th2,
                                                   ego.P, x_true, y_true)
        else:
            controller_fitness, CTerr = calc_off_tracking(
                x_truck, y_truck, th1, th2, ego.P, x_true, y_true)
    print('Benchmark 1 PID fitness: ', pid_fitness)
    print('Benchmark 1 controller fitness: ', controller_fitness)
    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.plot(xp, yp, 'g:')
    plt.legend(['Network Performance', 'True Path', 'PID Performance'])
    plt.xlabel('X location, (m)')
    plt.ylabel('Y Location, (m)')
    plt.show()

    #send the pid mimicking controller to the  evolutionary algorithm
    #print('bias   value before  evo: ', network.fc3.bias.data)
    evolution = EvolutionaryAlgorithm(network)
    for i in range(1000):
        print(i)
        evolution.iterate()
        #every 20 steps, run a benchmark on the best controller in the system to see how it is progressing
        if i % 100 == 0:
            '''
            Fc1=network.fc1.weight.data.numpy()
            Fc2=network.fc2.weight.data.numpy()
            Fc3=network.fc3.weight.data.numpy()
            Evo1=evolution.controllers[evolution.best_controller_idx].fc1.weight.data.numpy()
            Evo2=evolution.controllers[evolution.best_controller_idx].fc2.weight.data.numpy()
            Evo3=evolution.controllers[evolution.best_controller_idx].fc3.weight.data.numpy()
            print((Fc1-Evo1))
            print(np.linalg.norm((Fc1-Evo1)))
            print((Fc2-Evo2))
            print(np.linalg.norm((Fc2-Evo2)))
            print((Fc3-Evo3))
            print(np.linalg.norm((Fc3-Evo3)))
            Fc1b=network.fc1.bias.data.numpy()
            Fc2b=network.fc2.bias.data.numpy()
            Fc3b=network.fc3.bias.data.numpy()
            Evo1b=evolution.controllers[evolution.best_controller_idx].fc1.bias.data.numpy()
            Evo2b=evolution.controllers[evolution.best_controller_idx].fc2.bias.data.numpy()
            Evo3b=evolution.controllers[evolution.best_controller_idx].fc3.bias.data.numpy()
            print((Fc1b-Evo1b))
            print(np.linalg.norm((Fc1b-Evo1b)))
            print((Fc2b-Evo2b))
            print(np.linalg.norm((Fc2b-Evo2b)))
            print((Fc3b-Evo3b))
            print(np.linalg.norm((Fc3b-Evo3b)))
            '''
            controller = NN2Control()
            x_true = Benchmark1[:, 0]
            y_true = Benchmark1[:, 1]
            t = Benchmark1[:, 2]
            vel = Benchmark1[:, 3]
            x = []
            y = []
            xp = []
            yp = []

            x_truck = []
            y_truck = []
            th1t = 0
            th2t = 0
            th1 = []
            th2 = []
            pid = StanleyPID()
            for i in range(2):
                ego = EgoSim(sim_timestep=t[1] - t[0],
                             world_state_at_front=True)
                print('controller: ', i)
                th1t = 0
                th2t = 0
                th1 = []
                th2 = []
                x_truck = []
                y_truck = []
                for j in range(len(t)):
                    if i == 1:
                        state = ego.convert_world_state_to_front()
                        ctrl_delta, ctrl_vel, err, interr, differr = pid.calc_steer_control(
                            t[i], state, x_true, y_true, vel)
                        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                            [ctrl_vel, ctrl_delta])
                        x_truck.append(xt)
                        y_truck.append(yt)
                        th1.append(th1t)
                        th2.append(th2t)
                        xp.append(xt)
                        yp.append(yt)
                    else:
                        state = ego.convert_world_state_to_front()
                        ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
                            t[i], state, x_true, y_true, vel, th1t - th2t,
                            evolution.controllers[
                                evolution.best_controller_idx])
                        xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                            [ctrl_vel, ctrl_delta])
                        x_truck.append(xt)
                        y_truck.append(yt)
                        th1.append(th1t)
                        th2.append(th2t)
                        x.append(xt)
                        y.append(yt)
                if i == 1:
                    pid_fitness, CTerr = calc_off_tracking(
                        x_truck, y_truck, th1, th2, ego.P, x_true, y_true)
                else:
                    controller_fitness, CTerr = calc_off_tracking(
                        x_truck, y_truck, th1, th2, ego.P, x_true, y_true)

            print('Benchmark 1 PID fitness: ', pid_fitness)
            print('Benchmark 1 controller fitness: ', controller_fitness)
            plt.plot(x, y)
            plt.plot(x_true, y_true, 'r--')
            plt.plot(xp, yp, 'g:')
            plt.legend(['Network Performance', 'True Path', 'PID Performance'])
            plt.xlabel('X location, (m)')
            plt.ylabel('Y Location, (m)')
            plt.show()

    #Initialize varriables to run the first benchmark test
    controller = NN2Control()
    x_true = Benchmark1[:, 0]
    y_true = Benchmark1[:, 1]
    t = Benchmark1[:, 2]
    vel = Benchmark1[:, 3]
    x = []
    y = []
    xp = []
    yp = []
    x_truck = []
    y_truck = []
    th1t = 0
    th2t = 0
    th1 = []
    th2 = []
    pid = StanleyPID()
    #after the network has finished its evolutionary training, check it  the first benchmark
    for i in range(2):
        ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        print('controller: ', i)
        th1t = 0
        th2t = 0
        th1 = []
        th2 = []
        x_truck = []
        y_truck = []
        for j in range(len(t)):
            if i == 1:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = pid.calc_steer_control(
                    t[i], state, x_true, y_true, vel)
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                xp.append(xt)
                yp.append(yt)
            else:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
                    t[i], state, x_true, y_true, vel, th1t - th2t,
                    evolution.controllers[evolution.best_controller_idx])
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                x.append(xt)
                y.append(yt)

        if i == 1:
            pid_fitness, CTerr = calc_off_tracking(x_truck, y_truck, th1, th2,
                                                   ego.P, x_true, y_true)
        else:
            controller_fitness, CTerr = calc_off_tracking(
                x_truck, y_truck, th1, th2, ego.P, x_true, y_true)

    print('Benchmark 1 PID fitness: ', pid_fitness)
    print('Benchmark 1 controller fitness: ', controller_fitness)
    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.plot(xp, yp, 'g:')
    plt.legend(['Network Performance', 'True Path', 'PID Performance'])
    plt.xlabel('X location, (m)')
    plt.ylabel('Y Location, (m)')
    plt.show()

    #Initialize varriables to run the second benchmark test on the controller trained on the
    x_true = Benchmark2[:, 0]
    y_true = Benchmark2[:, 1]
    t = Benchmark2[:, 2]
    vel = Benchmark2[:, 3]
    x_truck = []
    y_truck = []
    th1t = 0
    th2t = 0
    th1 = []
    th2 = []
    pid = StanleyPID()
    x = []
    y = []
    xp = []
    yp = []
    #check it  the second benchmark
    for i in range(2):
        ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        print('controller: ', i)
        th1t = 0
        th2t = 0
        th1 = []
        th2 = []
        x_truck = []
        y_truck = []
        for j in range(len(t)):
            if i == 1:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = pid.calc_steer_control(
                    t[i], state, x_true, y_true, vel)
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                xp.append(xt)
                yp.append(yt)
            else:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
                    t[i], state, x_true, y_true, vel, th1t - th2t,
                    evolution.controllers[evolution.best_controller_idx])
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                x.append(xt)
                y.append(yt)
            #inputs=np.concatenate((err,ctrl_vel,interr,differr),axis=None)
            #network_input=torch.tensor(inputs)
            #out=self.controllers[i](network_input)
            #x.append(xt); y.append(yt); delta.append(deltat); th1.append(th1t); th2.append(th2t)
        if i == 1:
            pid_fitness, CTerr = calc_off_tracking(x_truck, y_truck, th1, th2,
                                                   ego.P, x_true, y_true)
        else:
            controller_fitness, CTerr = calc_off_tracking(
                x_truck, y_truck, th1, th2, ego.P, x_true, y_true)
    print('Benchmark 2 PID fitness: ', pid_fitness)
    print('Benchmark 2 controller fitness: ', controller_fitness)
    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.plot(xp, yp, 'g:')
    plt.legend(['Network Performance', 'True Path', 'PID Performance'])
    plt.xlabel('X location, (m)')
    plt.ylabel('Y Location, (m)')
    plt.show()
    x_true = Benchmark3[:, 0]
    y_true = Benchmark3[:, 1]
    t = Benchmark3[:, 2]
    vel = Benchmark3[:, 3]
    x = []
    y = []
    xp = []
    yp = []
    x_truck = []
    y_truck = []
    th1t = 0
    th2t = 0
    th1 = []
    th2 = []
    pid = StanleyPID()
    for i in range(2):
        ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        print('controller: ', i)
        th1t = 0
        th2t = 0
        th1 = []
        th2 = []
        x_truck = []
        y_truck = []
        for j in range(len(t)):
            if i == 1:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = pid.calc_steer_control(
                    t[i], state, x_true, y_true, vel)
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                xp.append(xt)
                yp.append(yt)

            else:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
                    t[i], state, x_true, y_true, vel, th1t - th2t,
                    evolution.controllers[evolution.best_controller_idx])
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                x.append(xt)
                y.append(yt)

            #inputs=np.concatenate((err,ctrl_vel,interr,differr),axis=None)
            #network_input=torch.tensor(inputs)
            #out=self.controllers[i](network_input)
            #x.append(xt); y.append(yt); delta.append(deltat); th1.append(th1t); th2.append(th2t)
        if i == 1:
            pid_fitness, CTerr = calc_off_tracking(x_truck, y_truck, th1, th2,
                                                   ego.P, x_true, y_true)
        else:
            controller_fitness, CTerr = calc_off_tracking(
                x_truck, y_truck, th1, th2, ego.P, x_true, y_true)
    print('Benchmark 3 PID fitness: ', pid_fitness)
    print('Benchmark 3 controller fitness: ', controller_fitness)
    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.plot(xp, yp, 'g:')
    plt.legend(['Network Performance', 'True Path', 'PID Performance'])
    plt.xlabel('X location, (m)')
    plt.ylabel('Y Location, (m)')
    plt.show()
    #
    #controller=NNControl()
    network = evolution.controllers[evolution.best_controller_idx]
    test_suite.basic_fitness_comparison(network)
    test_suite.trailer_length_variation_test(network)
    test_suite.trailer_mass_variation_test(network)
    test_suite.trailer_stiffness_variation_test(network)
    test_suite.noisy_signal_test(network)
    test_suite.initial_displacement_test(network)
    #controller.calc_steer_control(t,state,path_x,path_y,path_vel,network)
    #a=network.parameters()
    #print(a)
    '''
def test_network_on_benchmark(network, Benchmark):
    #Initialize varriables to run the first benchmark test  on the PID mimicking controller
    network = network.float()

    controller = NN2Control()
    x_true = Benchmark[:, 0]
    y_true = Benchmark[:, 1]
    t = Benchmark[:, 2]
    vel = Benchmark[:, 3]
    xp = []
    yp = []
    x = []
    y = []
    pid = StanleyPID()

    #Run the same benchmark on both the PID controller and the PID mimicking network and compare  the two
    for i in range(2):
        ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
        print('controller: ', i)
        th1t = 0
        th2t = 0
        th1 = []
        th2 = []
        x_truck = []
        y_truck = []
        for j in range(len(t)):
            if i == 1:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = pid.calc_steer_control(
                    t[i], state, x_true, y_true, vel)
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                xp.append(xt)
                yp.append(yt)
            else:
                state = ego.convert_world_state_to_front()
                ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
                    t[i], state, x_true, y_true, vel, th1t - th2t, network)
                xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                    [ctrl_vel, ctrl_delta])
                x_truck.append(xt)
                y_truck.append(yt)
                th1.append(th1t)
                th2.append(th2t)
                x.append(xt)
                y.append(yt)
        if i == 1:
            pid_fitness, CTerr = calc_off_tracking(x_truck, y_truck, th1, th2,
                                                   ego.P, x_true, y_true)
        else:
            controller_fitness, CTerr = calc_off_tracking(
                x_truck, y_truck, th1, th2, ego.P, x_true, y_true)
    print('Benchmark PID fitness: ', pid_fitness)
    print('Benchmark controller fitness: ', controller_fitness)
    plt.plot(x, y)
    plt.plot(x_true, y_true, 'r--')
    plt.plot(xp, yp, 'g--')
    plt.legend(['Network Performance', 'True Path', 'PID Performance'])
    plt.show()
예제 #11
0
    def evaluate_fitness(self):
        '''
        Evaluates and returns the fitness of all controllers in pool
        '''

        rpg = RandomPathGenerator()
        controller = NN2Control()
        x_true, y_true, t, vel = rpg.get_harder_path(end_time=10)
        x_truck = []
        y_truck = []
        self.controller_fitness = np.zeros(len(self.controllers))
        th1t = 0
        th2t = 0
        th1 = []
        th2 = []
        pid = StanleyPID()
        for i in range(len(self.controllers) + 1):
            #print(t)
            #print(x_true)
            #print(y_true)
            #print(vel)
            ego = EgoSim(sim_timestep=t[1] - t[0], world_state_at_front=True)
            controller = NN2Control()
            #print('controller: ', i)
            th1t = 0
            th2t = 0
            th1 = []
            th2 = []
            x_truck = []
            y_truck = []
            for j in range(len(t)):
                if i == len(self.controllers):
                    state = ego.convert_world_state_to_front()
                    ctrl_delta, ctrl_vel, err, interr, differr = pid.calc_steer_control(
                        t[i], state, x_true, y_true, vel)
                    xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                        [ctrl_vel, ctrl_delta])
                    x_truck.append(xt)
                    y_truck.append(yt)
                    th1.append(th1t)
                    th2.append(th2t)
                else:
                    state = ego.convert_world_state_to_front()

                    ctrl_delta, ctrl_vel, err, interr, differr = controller.calc_steer_control(
                        t[i], state, x_true, y_true, vel, th1t - th2t,
                        self.controllers[i])
                    #print(ctrl_delta)
                    xt, yt, deltat, th1t, th2t = ego.simulate_timestep(
                        [ctrl_vel, ctrl_delta])
                    x_truck.append(xt)
                    y_truck.append(yt)
                    th1.append(th1t)
                    th2.append(th2t)
                #inputs=np.concatenate((err,ctrl_vel,interr,differr),axis=None)
                #network_input=torch.tensor(inputs)
                #out=self.controllers[i](network_input)
                #x.append(xt); y.append(yt); delta.append(deltat); th1.append(th1t); th2.append(th2t)
            if i == len(self.controllers):
                self.pid_fitness, CTerr = calc_off_tracking(
                    x_truck, y_truck, th1, th2, ego.P, x_true, y_true)
            else:
                self.controller_fitness[i], CTerr = calc_off_tracking(
                    x_truck, y_truck, th1, th2, ego.P, x_true, y_true)
def trailer_mass_variation_test(network, num_tests=5):
    # Initialize memory for fitness evaluation

    rpg = RandomPathGenerator()
    # Generate a random path
    xs = []
    ys = []
    ts = []
    vels = []
    for i in range(0, num_tests):
        x1, y1, t1, v1 = rpg.get_harder_path(end_time=10, vel=25)
        xs.append(x1)
        ys.append(y1)
        ts.append(t1)
        vels.append(v1)
    # Set trailer mass alpha values to be looped through
    alpha = np.linspace(0.1, 1.5, num=20)
    pid_fitness = []
    nn_fitness = []
    print('new')
    for i in range(0, len(alpha)):
        print('{} of {}'.format(i, len(alpha)))

        pid_temp = []
        nn_temp = []
        for j in range(0, num_tests):
            x_true = xs[j]
            y_true = ys[j]
            t = ts[j]
            vel = vels[j]
            # Start a new PID controller and ego_sims for both controllers
            pid = StanleyPID()
            nn = NN2Control()
            ego_pid = EgoSim(sim_timestep=t[1] - t[0],
                             world_state_at_front=True)
            ego_pid.modify_parameters(m2_alpha=alpha[i])
            ego_nn = EgoSim(sim_timestep=t[1] - t[0],
                            world_state_at_front=True)
            ego_nn.modify_parameters(m2_alpha=alpha[i])
            pid_temp.append(
                fitness_from_simulation_loop(pid,
                                             ego_pid,
                                             t,
                                             x_true,
                                             y_true,
                                             vel,
                                             net=None))
            nn_temp.append(
                fitness_from_simulation_loop(nn,
                                             ego_nn,
                                             t,
                                             x_true,
                                             y_true,
                                             vel,
                                             net=network))
        pid_fitness.append(pid_temp)
        nn_fitness.append(nn_temp)

    pid_fitness_avg = [np.mean(fitness) for fitness in pid_fitness]
    nn_fitness_avg = [np.mean(fitness) for fitness in nn_fitness]
    pid_fitness_std = [np.std(fitness) for fitness in pid_fitness]
    nn_fitness_std = [np.std(fitness) for fitness in nn_fitness]
    plt.errorbar(alpha * 100,
                 pid_fitness_avg,
                 yerr=pid_fitness_std,
                 marker='s',
                 capsize=5,
                 ls='--')
    plt.errorbar(alpha * 100,
                 nn_fitness_avg,
                 yerr=nn_fitness_std,
                 marker='s',
                 capsize=5)
    plt.xlabel('Percentage of design trailer mass (%)')
    plt.ylabel('Sum squared tracking error, $m^2$\n(lower is better)')
    #    plt.ylim(0,2000)
    plt.legend(['PID', 'Neurocontroller'])
    plt.show()
def noisy_signal_test(network, num_tests=5):
    rpg = RandomPathGenerator()
    # Generate a random path
    xs = []
    ys = []
    ts = []
    vels = []
    for i in range(0, num_tests):
        x1, y1, t1, v1 = rpg.get_harder_path(end_time=10, vel=25)
        xs.append(x1)
        ys.append(y1)
        ts.append(t1)
        vels.append(v1)

    noise = np.linspace(0, 0.2, num=20)

    pid_fitness = []
    nn_fitness = []
    for i in range(0, len(noise)):
        print('{} of {}'.format(i, len(noise)))

        pid_temp = []
        nn_temp = []
        for j in range(0, num_tests):
            x_true = xs[j]
            y_true = ys[j]
            t = ts[j]
            vel = vels[j]
            # Start a new PID controller and ego_sims for both controllers
            pid = StanleyPID()
            nn = NN2Control()
            ego_pid = EgoSim(sim_timestep=t[1] - t[0],
                             world_state_at_front=True)
            ego_nn = EgoSim(sim_timestep=t[1] - t[0],
                            world_state_at_front=True)

            pid_temp.append(
                fitness_from_simulation_loop(pid,
                                             ego_pid,
                                             t,
                                             x_true,
                                             y_true,
                                             vel,
                                             net=None,
                                             noise=noise[i]))
            nn_temp.append(
                fitness_from_simulation_loop(nn,
                                             ego_nn,
                                             t,
                                             x_true,
                                             y_true,
                                             vel,
                                             net=network,
                                             noise=noise[i]))
        pid_fitness.append(pid_temp)
        nn_fitness.append(nn_temp)
    pid_fitness_avg = [np.mean(fitness) for fitness in pid_fitness]
    nn_fitness_avg = [np.mean(fitness) for fitness in nn_fitness]
    pid_fitness_std = [np.std(fitness) for fitness in pid_fitness]
    nn_fitness_std = [np.std(fitness) for fitness in nn_fitness]
    plt.errorbar(noise * 100,
                 pid_fitness_avg,
                 yerr=pid_fitness_std,
                 marker='s',
                 capsize=5,
                 ls='--')
    plt.errorbar(noise * 100,
                 nn_fitness_avg,
                 yerr=nn_fitness_std,
                 marker='s',
                 capsize=5)
    plt.xlabel(
        'Added noise to cross track error and heading error (m and rad)')
    plt.ylabel('Sum squared tracking error, $m^2$\n(lower is better)')
    plt.ylim(0, 1.1 * (max(pid_fitness_avg) + max(pid_fitness_std)))
    plt.legend(['PID', 'Neurocontroller'])
    plt.show()