예제 #1
0
    def __init__(self,
                 shape_list,
                 domain_shape,
                 size,
                 seed=9001,
                 pretty_name='random range'):
        self.init_params = util.init_params_from_locals(locals())

        self.shape_list = copy.deepcopy(shape_list)
        self.seed = seed
        self.pretty_name = pretty_name
        self._size = size

        prng = numpy.random.RandomState(seed)
        if shape_list == None:
            shapes = randomQueryShapes(domain_shape, prng)
        else:
            prng.shuffle(self.shape_list)
            shapes = itertools.cycle(
                self.shape_list)  # infinite iterable over shapes in shape_list
        queries = []
        for i in range(size):
            lb, ub = placeRandomly(next(shapes), domain_shape,
                                   prng)  # seed must be None or repeats
            queries.append(ndRangeUnion().addRange(lb, ub, 1.0))
        super(RandomRange, self).__init__(queries, domain_shape)
예제 #2
0
파일: __init__.py 프로젝트: zshwuhan/ektelo
    def __init__(self, index='DEFAULT1D', short_name='AHP*'):
        self.init_params = util.init_params_from_locals(locals())

        self._vSEP = Lfunction[index]['vSEP']
        self._vRatio = Lfunction[index]['vRatio']
        self._vEta = Lfunction[index]['vEta']
        self.short_name = short_name
예제 #3
0
 def __init__(self, domain, stripe_dim, ratio, approx):
     self.init_params = util.init_params_from_locals(locals())
     self.ratio = ratio
     self.domain = domain
     self.stripe_dim = stripe_dim
     self.approx = approx
     super().__init__()
예제 #4
0
파일: __init__.py 프로젝트: zshwuhan/ektelo
    def __init__(self, short_name="GreedyH"):

        self.init_params = util.init_params_from_locals(locals())
        self._max_block_size = None
        self._partition_engine = None
        self._estimate_engine = greedyH.greedyH_engine()
        self.short_name = short_name
예제 #5
0
 def __init__(self, domain_shape, ratio, approx, workload_based=False):
     self.init_params = util.init_params_from_locals(locals())
     self.domain_shape = domain_shape
     self.ratio = ratio
     self.approx = approx
     self.workload_based = workload_based
     super().__init__()
예제 #6
0
    def __init__(self, domain_shape, workload_based=False):
        self.init_params = util.init_params_from_locals(locals())
        self.domain_shape = domain_shape
        self.workload_based = workload_based
        super().__init__()

        assert len(domain_shape) in [1, 2], "HB only works for 1D and 2D domains"
예제 #7
0
    def __init__(self, fileName, reduce_to_dom_shape=None):
        self.init_params = util.init_params_from_locals(locals())
        self.fname = fileName

        #assert nickname in filenameDict, 'Filename parameter not recognized: %s' % nickname
        hist = load(self.fname)
        super(DatasetFromFile, self).__init__(hist, reduce_to_dom_shape, None)
예제 #8
0
 def __init__(self, domain_shape, eta, ratio, workload_based=False):
     self.init_params = util.init_params_from_locals(locals())
     self.n = np.prod(domain_shape)
     self.eta = eta
     self.ratio = ratio
     self.workload_based = workload_based
     super().__init__()
예제 #9
0
파일: data.py 프로젝트: zshwuhan/ektelo
    def __init__(self, config):
        self.init_params = util.init_params_from_locals(locals())

        self.config = config
        self._df = None
        self.hist = None
        self.edges = None
예제 #10
0
 def __init__(self, data_scale, alpha=0.5, c=10, c2=5):
     self.init_params = util.init_params_from_locals(locals())
     self.alpha = alpha
     self.c = c
     self.c2 = c2
     self.data_scale = data_scale
     super().__init__()
예제 #11
0
파일: __init__.py 프로젝트: zshwuhan/ektelo
    def __init__(self, ratio=0.25, short_name='DAWA'):
        # set ratio to 0 if no partition needed => GREEDYH_LINEAR,else DAWA_LINEAR.
        self.init_params = util.init_params_from_locals(locals())

        self._ratio = ratio
        self._partition_engine = l1partition.l1partition_approx_engine()
        self._estimate_engine = greedyH.greedyH_engine()
        self.short_name = short_name
예제 #12
0
 def __init__(self, ratio, rounds, data_scale, domain_shape, total_noise_scale):
     self.init_params = util.init_params_from_locals(locals())
     self.ratio = ratio
     self.rounds = rounds
     self.data_scale = data_scale
     self.domain_shape = domain_shape
     self.total_noise_scale = total_noise_scale  
     super().__init__()
예제 #13
0
 def __init__(self, ratio, rounds, data_scale, domain_shape, use_history):
     self.init_params = util.init_params_from_locals(locals())
     self.ratio = ratio
     self.rounds = rounds
     self.data_scale = data_scale
     self.domain_shape = domain_shape
     self.use_history = use_history
     super().__init__()
예제 #14
0
 def __init__(self, domain_shape, stripe_dim, ratio, rounds, approx):
     self.init_params = util.init_params_from_locals(locals())
     self.domain_shape = domain_shape
     self.stripe_dim = stripe_dim
     self.ratio = ratio
     self.rounds = rounds
     self.approx = approx
     super().__init__()
예제 #15
0
    def __init__(self, domain_shape, ratio, approx, workload_based=False):
        self.init_params = util.init_params_from_locals(locals())
        self.ratio = ratio
        self.approx = approx
        self.domain_shape = domain_shape
        self.workload_based = workload_based
        super().__init__()

        assert len(domain_shape) in [1, 2], "DAWA only works for 1D and 2D domains"
예제 #16
0
    def __init__(self, domain_shape_int, pretty_name='prefix 1D'):
        self.init_params = util.init_params_from_locals(locals())

        self.pretty_name = pretty_name

        queries = [
            ndRangeUnion().add1DRange(0, c, 1.0)
            for c in range(domain_shape_int)
        ]
        super(self.__class__, self).__init__(queries, (domain_shape_int, ))
예제 #17
0
파일: greedyH.py 프로젝트: zshwuhan/ektelo
    def __init__(self, branch=2, granu=100):
        """Setup the branching factor and granularity in numerical search.
        
        branch(2) - the branching factor of the hierarchy
        granu(100) - the granularity in numerical search
        """
        self.init_params = util.init_params_from_locals(locals())

        self._branch = branch
        self._granu = granu
예제 #18
0
파일: data.py 프로젝트: zshwuhan/ektelo
    def __init__(self, df, bins, domains, normed=False, weights=None):
        self.init_params = util.init_params_from_locals(locals())

        self.df = df
        self.bins = bins
        self.domains = domains
        self.normed = normed
        self.weights = weights
        self.hist = None
        self.edges = None
예제 #19
0
 def __init__(self, domain_shape, weight=1.0, pretty_name='identity'):
     self.init_params = util.init_params_from_locals(locals())
     self.weight = weight
     self.pretty_name = pretty_name
     if type(domain_shape) is int:
         domain_shape = (domain_shape, )
     indexes = itertools.product(*[list(range(i)) for i in domain_shape
                                   ])  # generate index tuples
     queries = [ndRangeUnion().addRange(i, i, weight) for i in indexes]
     super(self.__class__, self).__init__(queries, domain_shape)
예제 #20
0
파일: __init__.py 프로젝트: zshwuhan/ektelo
    def __init__(self, ratio=0.5, max_block_size=None, short_name="DAWA"):
        """ c,c2 are the constant parameter controlling the number of cells in each level
         alpha is the ratio of budget split on the first level beside total budget"""
        self.init_params = util.init_params_from_locals(locals())

        self._ratio = ratio
        self._max_block_size = max_block_size
        self._partition_engine = l1partition.l1partition_approx_engine()

        self._estimate_engine = greedyH.greedyH_engine()
        self.short_name = short_name
예제 #21
0
    def __init__(self, domain_shape, k, pretty_name='k-way marginals'):
        self.init_params = util.init_params_from_locals(locals())
        self.pretty_name = pretty_name
        if type(domain_shape) is int:
            domain_shape = (domain_shape, )
        assert 0 <= k <= len(domain_shape), 'invalid k'
        self.k = k
        D = len(domain_shape)

        idents = [Identity.oneD(n) for n in domain_shape]
        totals = [Total(n) for n in domain_shape]

        workloads = []
        for c in itertools.combinations(list(range(D)), k):
            oned = [idents[i] if i in c else totals[i] for i in range(D)]
            workloads.append(Kronecker(oned))
        super(self.__class__, self).__init__(workloads)
예제 #22
0
    def __init__(self,
                 relation,
                 nickname,
                 normed=False,
                 weights=None,
                 reduce_to_dom_shape=None):
        self.init_params = util.init_params_from_locals(locals())
        self.fname = nickname

        histogram = Histogram(relation.df, relation.bins, relation.domains,
                              normed, weights).generate()
        self.statistics = relation.statistics()
        self.statistics.update(histogram.statistics())

        if reduce_to_dom_shape != None:
            self.statistics['domain_valid'] = False
        else:
            self.statistics['domain_valid'] = True

        super(DatasetFromRelation,
              self).__init__(histogram.hist.copy(order='C'),
                             reduce_to_dom_shape)
예제 #23
0
    def __init__(self,
                 domain_shape,
                 prefix_axes=(0, ),
                 pretty_name='prefix marginals'):
        self.init_params = util.init_params_from_locals(locals())
        self.pretty_name = pretty_name
        self.prefix_axes = prefix_axes
        if type(domain_shape) is int:
            domain_shape = (domain_shape, )

        if len(domain_shape) - len(prefix_axes) > min(prefix_axes):
            import warnings
            warnings.warn(
                'It is not recommended to construct PrefixMarginals this way.  Transpose the data so that the prefix workloads are on the last dimensions'
            )

        oned = []
        for i, n in enumerate(domain_shape):
            if i in self.prefix_axes:
                oned.append(Prefix1D(n))
            else:
                oned.append(Identity.oneD(n) + Total(n))
        super(self.__class__, self).__init__(oned)
예제 #24
0
    def __init__(self, uniformity, dom_shape, scale, seed=None):
        '''
        Generate synthetic data of varying uniformity
        uniformity: parameter in [0,1] where 1 produces perfectly uniform data, 0 is maximally non-uniform
        All cells set to zero except fraction equal to 'uniformity' value.
        All non-zero cells are set to same value, then shuffled randomly.
        '''
        self.init_params = util.init_params_from_locals(locals())
        self.u = uniformity
        assert 0 <= uniformity and uniformity <= 1
        n = numpy.prod(dom_shape)  # total domain size
        hist = numpy.zeros(n)
        num_nonzero = max(1, int(uniformity * n))
        hist_value = util.old_div(scale, num_nonzero)
        hist[0:num_nonzero] = hist_value

        prng = numpy.random.RandomState(seed)
        prng.shuffle(hist)

        super(DatasetUniformityVaryingSynthetic,
              self).__init__(hist.reshape(dom_shape),
                             reduce_to_domain_shape=None,
                             dist=None)
예제 #25
0
파일: __init__.py 프로젝트: zshwuhan/ektelo
 def __init__(self, ratio=0.85, eta=0.35, short_name='AHP'):
     self.init_params = util.init_params_from_locals(locals())
     self._ratio = ratio
     self._eta = eta
     self.short_name = short_name
예제 #26
0
 def __init__(self, domain, impl='MM', stripe_dim=-1):
     self.init_params = util.init_params_from_locals(locals())
     self.domain = domain
     self.impl = impl
     self.stripe_dim = stripe_dim
     super().__init__()
예제 #27
0
 def __init__(self, domain, stripe_dim):
     self.init_params = util.init_params_from_locals(locals())
     self.domain = domain
     self.stripe_dim = stripe_dim
     super().__init__()
예제 #28
0
 def __init__(self, data_scale):
     self.init_params = util.init_params_from_locals(locals())
     self.data_scale = data_scale
     super().__init__()
예제 #29
0
 def __init__(self, eta, ratio, workload_based=False):
     self.init_params = util.init_params_from_locals(locals())
     self.eta = eta
     self.ratio = ratio
     self.workload_based = workload_based
     super().__init__()
예제 #30
0
 def __init__(self, theta, domain):
     self.init_params = util.init_params_from_locals(locals())
     self.theta = theta
     self.domain = domain
     super().__init__()