def mp_explore_in_env(args, pipe2_exp, worker_id): args.init_before_training(if_main=False) '''basic arguments''' env = args.env agent = args.agent rollout_num = args.rollout_num '''training arguments''' net_dim = args.net_dim max_memo = args.max_memo target_step = args.target_step gamma = args.gamma reward_scale = args.reward_scale random_seed = args.random_seed torch.manual_seed(random_seed + worker_id) np.random.seed(random_seed + worker_id) del args # In order to show these hyper-parameters clearly, I put them above. '''init: environment''' max_step = env.max_step state_dim = env.state_dim action_dim = env.action_dim if_discrete = env.if_discrete '''init: Agent, ReplayBuffer''' agent.init(net_dim, state_dim, action_dim) agent.state = env.reset() if_on_policy = agent.__class__.__name__ in {'AgentPPO', 'AgentGaePPO', 'AgentInterPPO'} buffer = ReplayBuffer(max_len=max_memo // rollout_num + max_step, if_on_policy=if_on_policy, state_dim=state_dim, action_dim=1 if if_discrete else action_dim, if_gpu=False) '''start exploring''' exp_step = target_step // rollout_num with torch.no_grad(): if not if_on_policy: _explore_before_training(env, buffer, exp_step, reward_scale, gamma) buffer.update__now_len__before_sample() pipe2_exp.send((buffer.buf_state[:buffer.now_len], buffer.buf_other[:buffer.now_len])) # buf_state, buf_other = pipe1_exp.recv() buffer.empty_memories__before_explore() while True: agent.store_transition(env, buffer, exp_step, reward_scale, gamma) buffer.update__now_len__before_sample() pipe2_exp.send((buffer.buf_state[:buffer.now_len], buffer.buf_other[:buffer.now_len])) # buf_state, buf_other = pipe1_exp.recv() buffer.empty_memories__before_explore() # pipe1_exp.send(agent.act) agent.act = pipe2_exp.recv()
def mp_explore_in_env(args, pipe2_exp, worker_id): env = args.env reward_scale = args.reward_scale gamma = args.gamma random_seed = args.random_seed agent_rl = args.agent_rl net_dim = args.net_dim max_memo = args.max_memo target_step = args.target_step rollout_num = args.rollout_num del args torch.manual_seed(random_seed + worker_id) np.random.seed(random_seed + worker_id) '''init: env''' state_dim = env.state_dim action_dim = env.action_dim if_discrete = env.if_discrete max_step = env.max_step '''build agent''' agent = agent_rl(state_dim, action_dim, net_dim) # training agent agent.state = env.reset() # agent.device = torch.device('cpu') # env_cpu--act_cpu a little faster than env_cpu--act_gpu, but high cpu-util '''build replay buffer, init: total_step, reward_avg''' if_on_policy = bool(agent_rl.__name__ in {'AgentPPO', 'AgentGaePPO', 'AgentInterPPO'}) buffer = ReplayBuffer(max_memo // rollout_num + max_step, state_dim, if_on_policy=if_on_policy, action_dim=1 if if_discrete else action_dim) # build experience replay buffer exp_step = target_step // rollout_num with torch.no_grad(): while True: # pipe1_exp.send(agent.act) agent.act = pipe2_exp.recv() agent.update_buffer(env, buffer, exp_step, reward_scale, gamma) buffer.update__now_len__before_sample() pipe2_exp.send((buffer.buf_state[:buffer.now_len], buffer.buf_other[:buffer.now_len]))
def train_and_evaluate(args): args.init_before_training() '''basic arguments''' cwd = args.cwd env = args.env agent = args.agent gpu_id = args.gpu_id # necessary for Evaluator? env_eval = args.env_eval '''training arguments''' net_dim = args.net_dim max_memo = args.max_memo break_step = args.break_step batch_size = args.batch_size target_step = args.target_step repeat_times = args.repeat_times if_break_early = args.if_break_early gamma = args.gamma reward_scale = args.reward_scale '''evaluating arguments''' show_gap = args.show_gap eval_times1 = args.eval_times1 eval_times2 = args.eval_times2 env_eval = deepcopy(env) if env_eval is None else deepcopy(env_eval) del args # In order to show these hyper-parameters clearly, I put them above. '''init: environment''' max_step = env.max_step state_dim = env.state_dim action_dim = env.action_dim if_discrete = env.if_discrete env_eval = deepcopy(env) if env_eval is None else deepcopy(env_eval) '''init: Agent, ReplayBuffer, Evaluator''' agent.init(net_dim, state_dim, action_dim) if_on_policy = agent.__class__.__name__ in {'AgentPPO', 'AgentGaePPO', 'AgentInterPPO'} buffer = ReplayBuffer(max_len=max_memo + max_step, if_on_policy=if_on_policy, if_gpu=True, state_dim=state_dim, action_dim=1 if if_discrete else action_dim) evaluator = Evaluator(cwd=cwd, agent_id=gpu_id, device=agent.device, env=env_eval, eval_times1=eval_times1, eval_times2=eval_times2, show_gap=show_gap) # build Evaluator '''prepare for training''' agent.state = env.reset() if if_on_policy: steps = 0 else: # explore_before_training for off-policy with torch.no_grad(): # update replay buffer steps = _explore_before_training(env, buffer, target_step, reward_scale, gamma) agent.update_net(buffer, target_step, batch_size, repeat_times) # pre-training and hard update agent.act_target.load_state_dict(agent.act.state_dict()) if 'act_target' in dir(agent) else None agent.cri_target.load_state_dict(agent.cri.state_dict()) if 'cri_target' in dir(agent) else None total_step = steps '''start training''' if_solve = False while not ((if_break_early and if_solve) or total_step > break_step or os.path.exists(f'{cwd}/stop')): with torch.no_grad(): # speed up running steps = agent.store_transition(env, buffer, target_step, reward_scale, gamma) total_step += steps obj_a, obj_c = agent.update_net(buffer, target_step, batch_size, repeat_times) with torch.no_grad(): # speed up running if_solve = evaluator.evaluate_save(agent.act, steps, obj_a, obj_c)
def train_and_evaluate(args): args.init_before_training() '''basic arguments''' cwd = args.cwd env = args.env agent = args.agent gpu_id = args.gpu_id # necessary for Evaluator? '''training arguments''' net_dim = args.net_dim max_memo = args.max_memo break_step = args.break_step batch_size = args.batch_size target_step = args.target_step repeat_times = args.repeat_times if_break_early = args.if_allow_break if_per = args.if_per gamma = args.gamma reward_scale = args.reward_scale '''evaluating arguments''' show_gap = args.show_gap eval_times1 = args.eval_times1 eval_times2 = args.eval_times2 if args.env_eval is not None: env_eval = args.env_eval elif args.env_eval in set(gym.envs.registry.env_specs.keys()): env_eval = PreprocessEnv(gym.make(env.env_name)) else: env_eval = deepcopy(env) del args # In order to show these hyper-parameters clearly, I put them above. '''init: environment''' max_step = env.max_step state_dim = env.state_dim action_dim = env.action_dim if_discrete = env.if_discrete '''init: Agent, ReplayBuffer, Evaluator''' agent.init(net_dim, state_dim, action_dim, if_per) if_on_policy = getattr(agent, 'if_on_policy', False) buffer = ReplayBuffer(max_len=max_memo + max_step, state_dim=state_dim, action_dim=1 if if_discrete else action_dim, if_on_policy=if_on_policy, if_per=if_per, if_gpu=True) evaluator = Evaluator(cwd=cwd, agent_id=gpu_id, device=agent.device, env=env_eval, eval_times1=eval_times1, eval_times2=eval_times2, show_gap=show_gap) '''prepare for training''' agent.state = env.reset() if if_on_policy: steps = 0 else: # explore_before_training for off-policy with torch.no_grad(): # update replay buffer steps = explore_before_training(env, buffer, target_step, reward_scale, gamma) agent.update_net(buffer, target_step, batch_size, repeat_times) # pre-training and hard update agent.act_target.load_state_dict(agent.act.state_dict()) if getattr( agent, 'act_target', None) else None agent.cri_target.load_state_dict(agent.cri.state_dict()) if getattr( agent, 'cri_target', None) else None total_step = steps '''start training''' if_reach_goal = False while not ((if_break_early and if_reach_goal) or total_step > break_step or os.path.exists(f'{cwd}/stop')): with torch.no_grad(): # speed up running steps = agent.explore_env(env, buffer, target_step, reward_scale, gamma) total_step += steps obj_a, obj_c = agent.update_net(buffer, target_step, batch_size, repeat_times) with torch.no_grad(): # speed up running if_reach_goal = evaluator.evaluate_save(agent.act, steps, obj_a, obj_c) evaluator.draw_plot() print( f'| SavedDir: {cwd}\n| UsedTime: {time.time() - evaluator.start_time:.0f}' )
def train_and_evaluate(args): args.init_before_training() cwd = args.cwd env = args.env env_eval = args.env_eval agent_id = args.gpu_id agent_rl = args.agent_rl # basic arguments gamma = args.gamma # training arguments net_dim = args.net_dim max_memo = args.max_memo target_step = args.target_step batch_size = args.batch_size repeat_times = args.repeat_times reward_scale = args.reward_scale show_gap = args.show_gap # evaluate arguments eval_times1 = args.eval_times1 eval_times2 = args.eval_times2 break_step = args.break_step if_break_early = args.if_break_early env_eval = deepcopy(env) if env_eval is None else deepcopy(env_eval) del args # In order to show these hyper-parameters clearly, I put them above. '''init: env''' state_dim = env.state_dim action_dim = env.action_dim if_discrete = env.if_discrete max_step = env.max_step env_eval = deepcopy(env) if env_eval is None else deepcopy(env_eval) '''init: Agent, Evaluator, ReplayBuffer''' agent = agent_rl(net_dim, state_dim, action_dim) # build AgentRL agent.state = env.reset() evaluator = Evaluator(cwd=cwd, agent_id=agent_id, device=agent.device, env=env_eval, eval_times1=eval_times1, eval_times2=eval_times2, show_gap=show_gap) # build Evaluator if_on_policy = agent_rl.__name__ in {'AgentPPO', 'AgentGaePPO'} buffer = ReplayBuffer(max_memo + max_step, state_dim, if_on_policy=if_on_policy, action_dim=1 if if_discrete else action_dim) # build experience replay buffer if if_on_policy: steps = 0 else: with torch.no_grad(): # update replay buffer steps = _explore_before_train(env, buffer, target_step, reward_scale, gamma) agent.update_net(buffer, target_step, batch_size, repeat_times) # pre-training and hard update agent.act_target.load_state_dict(agent.act.state_dict()) if 'act_target' in dir(agent) else None total_step = steps if_solve = False while not ((if_break_early and if_solve) or total_step > break_step or os.path.exists(f'{cwd}/stop')): with torch.no_grad(): # speed up running steps = agent.update_buffer(env, buffer, target_step, reward_scale, gamma) total_step += steps obj_a, obj_c = agent.update_net(buffer, target_step, batch_size, repeat_times) with torch.no_grad(): # speed up running if_solve = evaluator.evaluate_act__save_checkpoint(agent.act, steps, obj_a, obj_c)