def demo1_discrete_action_space(): args = Arguments(agent=None, env=None, gpu_id=None) # see Arguments() to see hyper-parameters '''choose an DRL algorithm''' # from elegantrl.agent import AgentD3QN # AgentDQN,AgentDuelDQN, AgentDoubleDQN, # args.agent = AgentD3QN() from elegantrl.agent import AgentDuelingDQN # AgentDQN,AgentDuelDQN, AgentDoubleDQN, args.agent = AgentDuelingDQN() '''choose environment''' "TotalStep: 2e3, TargetReturn: 200, UsedTime: 20s, CartPole-v0" "TotalStep: 2e3, TargetReturn: 200, UsedTime: 30s, CartPole-v0 rollout_num = 2" # args.env = PreprocessEnv(env=gym.make('CartPole-v0')) # args.net_dim = 2 ** 7 # change a default hyper-parameters # args.batch_size = 2 ** 7 # args.target_step = 2 ** 8 # args.eval_gap = 2 ** 0 "TotalStep: 6e4, TargetReturn: 200, UsedTime: 600s, LunarLander-v2, D3DQN" "TotalStep: 4e4, TargetReturn: 200, UsedTime: 600s, LunarLander-v2, DuelDQN" args.env = PreprocessEnv(env=gym.make('LunarLander-v2')) args.net_dim = 2 ** 8 args.batch_size = 2 ** 8 '''train and evaluate''' train_and_evaluate(args)
def demo2_continuous_action_space_off_policy(): args = Arguments(if_on_policy=False) '''choose an DRL algorithm''' from elegantrl.agent import AgentModSAC # AgentSAC, AgentTD3, AgentDDPG args.agent = AgentModSAC() '''choose environment''' "TotalStep: 3e4, TargetReturn: -200, UsedTime: 300s, Pendulum-v0, TD3" "TotalStep: 2e4, TargetReturn: -200, UsedTime: 200s, Pendulum-v0, ModSAC " env = gym.make('Pendulum-v0') env.target_return = -200 # set target_return manually for env 'Pendulum-v0' args.env = PreprocessEnv(env=env) args.reward_scale = 2 ** -3 # RewardRange: -1800 < -200 < -50 < 0 "TD3 TotalStep: 9e4, TargetReturn: 100, UsedTime: 3ks, LunarLanderContinuous-v2" "TD3 TotalStep: 20e4, TargetReturn: 200, UsedTime: 5ks, LunarLanderContinuous-v2" "SAC TotalStep: 9e4, TargetReturn: 200, UsedTime: 3ks, LunarLanderContinuous-v2" "ModSAC TotalStep: 5e4, TargetReturn: 200, UsedTime: 1ks, LunarLanderContinuous-v2" # args.env = PreprocessEnv(env=gym.make('LunarLanderContinuous-v2')) # args.reward_scale = 2 ** 0 # RewardRange: -800 < -200 < 200 < 302 # args.eval_times2 = 2 ** 4 # set a large eval_times to get a precise learning curve "ModSAC TotalStep: 2e5, TargetReturn: 300, UsedTime: 5000s, BipedalWalker-v3" # args.env = PreprocessEnv(env=gym.make('BipedalWalker-v3')) # args.reward_scale = 2 ** 0 # RewardRange: -200 < -150 < 300 < 334 # args.net_dim = 2 ** 8 # args.break_step = int(2e5) # args.if_allow_break = True # allow break training when reach goal (early termination) # args.break_step = int(2e5 * 4) # break training after 'total_step > break_step' '''train and evaluate''' train_and_evaluate(args)
def demo4_bullet_mujoco_off_policy(): args = Arguments(if_on_policy=False) args.random_seed = 10086 from elegantrl.agent import AgentModSAC # AgentSAC, AgentTD3, AgentDDPG args.agent = AgentModSAC() # AgentSAC(), AgentTD3(), AgentDDPG() args.agent.if_use_dn = True import pybullet_envs # for python-bullet-gym dir(pybullet_envs) "TotalStep: 5e4, TargetReturn: 18, UsedTime: 1100s, ReacherBulletEnv-v0" "TotalStep: 30e4, TargetReturn: 25, UsedTime: s, ReacherBulletEnv-v0" args.env = PreprocessEnv(gym.make('ReacherBulletEnv-v0')) args.env.max_step = 2 ** 10 # important, default env.max_step=150 args.reward_scale = 2 ** 0 # -80 < -30 < 18 < 28 args.gamma = 0.96 args.break_step = int(6e4 * 8) # (4e4) 8e5, UsedTime: (300s) 700s args.eval_times1 = 2 ** 2 args.eval_times1 = 2 ** 5 args.if_per = True train_and_evaluate(args) "TotalStep: 3e5, TargetReward: 1500, UsedTime: 4ks, AntBulletEnv-v0 ModSAC if_use_dn" "TotalStep: 4e5, TargetReward: 2500, UsedTime: 6ks, AntBulletEnv-v0 ModSAC if_use_dn" "TotalStep: 10e5, TargetReward: 2879, UsedTime: ks, AntBulletEnv-v0 ModSAC if_use_dn" "TotalStep: 3e5, TargetReward: 1500, UsedTime: 8ks, AntBulletEnv-v0 ModSAC if_use_cn" "TotalStep: 7e5, TargetReward: 2500, UsedTime: 18ks, AntBulletEnv-v0 ModSAC if_use_cn" "TotalStep: 16e5, TargetReward: 2923, UsedTime: ks, AntBulletEnv-v0 ModSAC if_use_cn" args.env = PreprocessEnv(env=gym.make('AntBulletEnv-v0')) args.break_step = int(6e5 * 8) # (5e5) 1e6, UsedTime: (15,000s) 30,000s args.if_allow_break = False args.reward_scale = 2 ** -2 # RewardRange: -50 < 0 < 2500 < 3340 args.max_memo = 2 ** 21 args.batch_size = 2 ** 8 args.repeat_times = 2 ** 1 args.eval_gap = 2 ** 9 # for Recorder args.eva_size1 = 2 ** 1 # for Recorder args.eva_size2 = 2 ** 3 # for Recorder # train_and_evaluate(args) args.rollout_num = 4 train_and_evaluate_mp(args)
if __name__ == '__main__': args = Arguments(if_on_policy=True) args.agent = AgentPPO() args.agent.if_use_gae = True args.agent.lambda_entropy = 0.04 from kuka_cam_reach_env import KukaCamReachEnv, CustomSkipFrame env_config = { "is_render": False, "is_good_view": False, "max_steps_one_episode": 1000, } args.env = CustomSkipFrame(KukaCamReachEnv(config=env_config)) args.gamma = 0.995 args.break_step = int(3e5) args.net_dim = 2**9 args.max_step = args.env.max_step args.max_memo = args.max_step * 4 args.batch_size = 2**10 args.repeat_times = 2**3 args.eval_gap = 2**4 args.eval_times1 = 2**3 args.eval_times2 = 2**5 args.if_allow_break = False '''train and evaluate''' # train_and_evaluate(args) args.rollout_num = 1 train_and_evaluate(args)
def train_model(self, model, cwd, total_timesteps=5000): model.cwd = cwd model.break_step = total_timesteps train_and_evaluate(model)