예제 #1
0
def demo1_discrete_action_space():
    args = Arguments(agent=None, env=None, gpu_id=None)  # see Arguments() to see hyper-parameters

    '''choose an DRL algorithm'''
    # from elegantrl.agent import AgentD3QN  # AgentDQN,AgentDuelDQN, AgentDoubleDQN,
    # args.agent = AgentD3QN()
    from elegantrl.agent import AgentDuelingDQN  # AgentDQN,AgentDuelDQN, AgentDoubleDQN,
    args.agent = AgentDuelingDQN()

    '''choose environment'''
    "TotalStep: 2e3, TargetReturn: 200, UsedTime: 20s, CartPole-v0"
    "TotalStep: 2e3, TargetReturn: 200, UsedTime: 30s, CartPole-v0 rollout_num = 2"
    # args.env = PreprocessEnv(env=gym.make('CartPole-v0'))
    # args.net_dim = 2 ** 7  # change a default hyper-parameters
    # args.batch_size = 2 ** 7
    # args.target_step = 2 ** 8
    # args.eval_gap = 2 ** 0

    "TotalStep: 6e4, TargetReturn: 200, UsedTime: 600s, LunarLander-v2, D3DQN"
    "TotalStep: 4e4, TargetReturn: 200, UsedTime: 600s, LunarLander-v2, DuelDQN"
    args.env = PreprocessEnv(env=gym.make('LunarLander-v2'))
    args.net_dim = 2 ** 8
    args.batch_size = 2 ** 8

    '''train and evaluate'''
    train_and_evaluate(args)
예제 #2
0
def demo2_continuous_action_space_off_policy():
    args = Arguments(if_on_policy=False)

    '''choose an DRL algorithm'''
    from elegantrl.agent import AgentModSAC  # AgentSAC, AgentTD3, AgentDDPG
    args.agent = AgentModSAC()

    '''choose environment'''
    "TotalStep: 3e4, TargetReturn: -200, UsedTime: 300s, Pendulum-v0, TD3"
    "TotalStep: 2e4, TargetReturn: -200, UsedTime: 200s, Pendulum-v0, ModSAC "
    env = gym.make('Pendulum-v0')
    env.target_return = -200  # set target_return manually for env 'Pendulum-v0'
    args.env = PreprocessEnv(env=env)
    args.reward_scale = 2 ** -3  # RewardRange: -1800 < -200 < -50 < 0

    "TD3    TotalStep:  9e4, TargetReturn: 100, UsedTime: 3ks, LunarLanderContinuous-v2"
    "TD3    TotalStep: 20e4, TargetReturn: 200, UsedTime: 5ks, LunarLanderContinuous-v2"
    "SAC    TotalStep:  9e4, TargetReturn: 200, UsedTime: 3ks, LunarLanderContinuous-v2"
    "ModSAC TotalStep:  5e4, TargetReturn: 200, UsedTime: 1ks, LunarLanderContinuous-v2"
    # args.env = PreprocessEnv(env=gym.make('LunarLanderContinuous-v2'))
    # args.reward_scale = 2 ** 0  # RewardRange: -800 < -200 < 200 < 302
    # args.eval_times2 = 2 ** 4  # set a large eval_times to get a precise learning curve

    "ModSAC TotalStep: 2e5, TargetReturn: 300, UsedTime: 5000s, BipedalWalker-v3"
    # args.env = PreprocessEnv(env=gym.make('BipedalWalker-v3'))
    # args.reward_scale = 2 ** 0  # RewardRange: -200 < -150 < 300 < 334
    # args.net_dim = 2 ** 8
    # args.break_step = int(2e5)
    # args.if_allow_break = True  # allow break training when reach goal (early termination)
    # args.break_step = int(2e5 * 4)  # break training after 'total_step > break_step'

    '''train and evaluate'''
    train_and_evaluate(args)
예제 #3
0
def demo4_bullet_mujoco_off_policy():
    args = Arguments(if_on_policy=False)
    args.random_seed = 10086

    from elegantrl.agent import AgentModSAC  # AgentSAC, AgentTD3, AgentDDPG
    args.agent = AgentModSAC()  # AgentSAC(), AgentTD3(), AgentDDPG()
    args.agent.if_use_dn = True

    import pybullet_envs  # for python-bullet-gym
    dir(pybullet_envs)

    "TotalStep:  5e4, TargetReturn: 18, UsedTime: 1100s, ReacherBulletEnv-v0"
    "TotalStep: 30e4, TargetReturn: 25, UsedTime:     s, ReacherBulletEnv-v0"
    args.env = PreprocessEnv(gym.make('ReacherBulletEnv-v0'))
    args.env.max_step = 2 ** 10  # important, default env.max_step=150
    args.reward_scale = 2 ** 0  # -80 < -30 < 18 < 28
    args.gamma = 0.96
    args.break_step = int(6e4 * 8)  # (4e4) 8e5, UsedTime: (300s) 700s
    args.eval_times1 = 2 ** 2
    args.eval_times1 = 2 ** 5
    args.if_per = True

    train_and_evaluate(args)

    "TotalStep:  3e5, TargetReward: 1500, UsedTime:  4ks, AntBulletEnv-v0 ModSAC if_use_dn"
    "TotalStep:  4e5, TargetReward: 2500, UsedTime:  6ks, AntBulletEnv-v0 ModSAC if_use_dn"
    "TotalStep: 10e5, TargetReward: 2879, UsedTime:   ks, AntBulletEnv-v0 ModSAC if_use_dn"
    "TotalStep:  3e5, TargetReward: 1500, UsedTime:  8ks, AntBulletEnv-v0 ModSAC if_use_cn"
    "TotalStep:  7e5, TargetReward: 2500, UsedTime: 18ks, AntBulletEnv-v0 ModSAC if_use_cn"
    "TotalStep: 16e5, TargetReward: 2923, UsedTime:   ks, AntBulletEnv-v0 ModSAC if_use_cn"
    args.env = PreprocessEnv(env=gym.make('AntBulletEnv-v0'))
    args.break_step = int(6e5 * 8)  # (5e5) 1e6, UsedTime: (15,000s) 30,000s
    args.if_allow_break = False
    args.reward_scale = 2 ** -2  # RewardRange: -50 < 0 < 2500 < 3340
    args.max_memo = 2 ** 21
    args.batch_size = 2 ** 8
    args.repeat_times = 2 ** 1
    args.eval_gap = 2 ** 9  # for Recorder
    args.eva_size1 = 2 ** 1  # for Recorder
    args.eva_size2 = 2 ** 3  # for Recorder

    # train_and_evaluate(args)
    args.rollout_num = 4
    train_and_evaluate_mp(args)
if __name__ == '__main__':
    args = Arguments(if_on_policy=True)
    args.agent = AgentPPO()
    args.agent.if_use_gae = True
    args.agent.lambda_entropy = 0.04

    from kuka_cam_reach_env import KukaCamReachEnv, CustomSkipFrame

    env_config = {
        "is_render": False,
        "is_good_view": False,
        "max_steps_one_episode": 1000,
    }

    args.env = CustomSkipFrame(KukaCamReachEnv(config=env_config))
    args.gamma = 0.995
    args.break_step = int(3e5)
    args.net_dim = 2**9
    args.max_step = args.env.max_step
    args.max_memo = args.max_step * 4
    args.batch_size = 2**10
    args.repeat_times = 2**3
    args.eval_gap = 2**4
    args.eval_times1 = 2**3
    args.eval_times2 = 2**5
    args.if_allow_break = False
    '''train and evaluate'''
    # train_and_evaluate(args)
    args.rollout_num = 1
    train_and_evaluate(args)
예제 #5
0
 def train_model(self, model, cwd, total_timesteps=5000):
     model.cwd = cwd
     model.break_step = total_timesteps
     train_and_evaluate(model)