def create_model(): from elektronn2 import neuromancer import theano.tensor as T import numpy as np in_sh = (None,1,572-32*9,572-32*9) img = neuromancer.Input(in_sh, 'b,f,x,y', name='raw') out0 = neuromancer.Conv(img, 64, (3,3), (1,1)) out1 = neuromancer.Conv(out0, 64, (3,3), (1,1)) out2 = neuromancer.Pool(out1, (2,2)) out3 = neuromancer.Conv(out2, 128, (3,3), (1,1)) out4 = neuromancer.Conv(out3, 128, (3,3), (1,1)) out5 = neuromancer.Pool(out4, (2,2)) out6 = neuromancer.Conv(out5, 256, (3,3), (1,1)) out7 = neuromancer.Conv(out6, 256, (3,3), (1,1)) out8 = neuromancer.Pool(out7, (2,2)) out9 = neuromancer.Conv(out8, 512, (3,3), (1,1)) out10 = neuromancer.Conv(out9, 512, (3,3), (1,1)) out11 = neuromancer.Pool(out10, (2,2)) out12 = neuromancer.Conv(out11, 1024, (3,3), (1,1)) out13 = neuromancer.Conv(out12, 1024, (3,3), (1,1)) out14 = neuromancer.Pool(out13, (2,2)) #### up0 = neuromancer.UpConvMerge(out10, out14, 1024) up1 = neuromancer.Conv(up0, 512, (3,3), (1,1)) up2 = neuromancer.Conv(up1, 512, (3,3), (1,1)) up3 = neuromancer.UpConvMerge(out7, up2, 512) up4 = neuromancer.Conv(up3, 256, (3,3), (1,1)) up5 = neuromancer.Conv(up4, 256, (3,3), (1,1)) up6 = neuromancer.UpConvMerge(out4, up5, 256) up7 = neuromancer.Conv(up6, 128, (3,3), (1,1)) up8 = neuromancer.Conv(up7, 128, (3,3), (1,1)) up9 = neuromancer.UpConvMerge(out1, up8, 128) up10 = neuromancer.Conv(up9, 64, (3,3), (1,1)) top_feat = neuromancer.Conv(up10, 64, (3,3), (1,1)) # Target outputs barr_out = neuromancer.Conv(top_feat, 3, (1,1), (1,1), activation_func='lin', name='barr') obj_out = neuromancer.Conv(top_feat, 4, (1,1), (1,1), activation_func='lin', name='obj') my_out = neuromancer.Conv(top_feat, 3, (1,1), (1,1), activation_func='lin', name='my') barr_out = neuromancer.Softmax(barr_out) obj_out = neuromancer.Softmax(obj_out) my_out = neuromancer.Softmax(my_out) target = neuromancer.Input_like(top_feat, dtype='int16', override_f=3, name='target') barr, obj, my = neuromancer.split(target, 'f', n_out=3, name=['barr_t', 'obj_t', 'my_t']) # Target loss barr_loss_pix = neuromancer.MultinoulliNLL(barr_out, barr, target_is_sparse=True,name='nll_barr') obj_loss_pix = neuromancer.MultinoulliNLL(obj_out, obj, target_is_sparse=True, name='nll_obj') my_loss_pix = neuromancer.MultinoulliNLL(my_out, my, target_is_sparse=True, name='nll_my') pred = neuromancer.Concat([barr_out, obj_out, my_out], axis='f') pred.feature_names = ['barrier_bg', 'barr_mem', 'barr_ecs', 'obj_bg', 'obj_mito', 'obj_ves', 'obj_syn', 'my_bg', 'my_out', 'my_in'] # Objective weights = np.array([2.154, 0.42, 0.42]) weights *= len(weights) / weights.sum() loss = neuromancer.AggregateLoss([barr_loss_pix, obj_loss_pix, my_loss_pix], mixing_weights=weights) # Monitoring / Debug outputs nll_barr = neuromancer.ApplyFunc(barr_loss_pix, T.mean, name='mnll_barr') nll_obj = neuromancer.ApplyFunc(obj_loss_pix, T.mean, name='mnll_obj') nll_my = neuromancer.ApplyFunc(my_loss_pix, T.mean, name='mnll_my') errors = neuromancer.Errors(barr_out, barr, target_is_sparse=True) model = neuromancer.model_manager.getmodel() model.designate_nodes(input_node=img, target_node=target, loss_node=loss, prediction_node=pred, prediction_ext=[loss, errors, pred], debug_outputs =[nll_barr, errors, nll_obj, nll_my]) return model
def create_model(): from elektronn2 import neuromancer act = 'relu' in_sh = (batch_size, 4, 3, 128, 256) inp = neuromancer.Input(in_sh, 'b,f,z,y,x', name='raw') out0 = neuromancer.Conv(inp, 13, (1, 5, 5), (1, 2, 2), activation_func=act, dropout_rate=dr) out0 = neuromancer.Conv(out0, 19, (1, 5, 5), (1, 2, 2), activation_func=act, dropout_rate=dr) out0 = neuromancer.Conv(out0, 25, (1, 4, 4), (1, 2, 2), activation_func=act, dropout_rate=dr) out0 = neuromancer.Conv(out0, 25, (1, 4, 4), (1, 2, 2), activation_func=act, dropout_rate=dr) out0 = neuromancer.Conv(out0, 30, (1, 2, 2), (1, 2, 2), activation_func=act, dropout_rate=dr) out0 = neuromancer.Conv(out0, 30, (1, 1, 1), (1, 2, 2), activation_func=act, dropout_rate=dr) out = neuromancer.Conv(out0, 31, (1, 1, 1), (1, 1, 1), activation_func=act, dropout_rate=dr) out0, out1, out2 = neuromancer.split(out, axis="z", n_out=3) out0 = neuromancer.Reshape(out0, shape=(inp.shape[0], out0.shape.stripbatch_prod, 1), tags="b,f,z") out1 = neuromancer.Reshape(out1, shape=(inp.shape[0], out1.shape.stripbatch_prod, 1), tags="b,f,z") out2 = neuromancer.Reshape(out2, shape=(inp.shape[0], out2.shape.stripbatch_prod, 1), tags="b,f,z") out = neuromancer.Concat([out0, out1, out2], axis="z") out = neuromancer.Perceptron(out, 40, flatten=False, dropout_rate=dr) out = neuromancer.Perceptron(out, 10, flatten=False, dropout_rate=dr) out0, out1, out2 = neuromancer.split(out, axis="z", n_out=3) d_small = neuromancer.EuclideanDistance(out0, out1) d_big = neuromancer.EuclideanDistance(out0, out2) loss = neuromancer.RampLoss(d_small, d_big, margin=0.2) loss = neuromancer.AggregateLoss(loss) model = neuromancer.model_manager.getmodel() # model = neuromancer.model.modelload("/wholebrain/scratch/pschuber/CNN_Training/nupa_cnn/t_net/ssv6_tripletnet_v9/ssv6_tripletnet_v9-FINAL.mdl") model.designate_nodes(input_node=inp, target_node=None, loss_node=loss, prediction_node=out, prediction_ext=[loss, loss, out]) # params = neuromancer.model.params_from_model_file("/wholebrain/scratch/pschuber/CNN_Training/nupa_cnn/t_net/ssv6_tripletnet_v9/ssv6_tripletnet_v9-FINAL.mdl") # params = dict(filter(lambda x: x[0].startswith('conv'), params.items())) # model.set_param_values(params) return model # if __name__ == "__main__": # model = create_model() # "Test" if model is saveable # model.save("/tmp/"+save_name)
def create_model(): from elektronn2 import neuromancer as nm trainee = trainee_dict["create_model"]() inp = trainee.input_node trainee_gt = trainee.target_node trainee_out = trainee.prediction_node trainee_loss = trainee.loss_node adv_input, adv_target = nm.advmerge(trainee_out, trainee_gt) # raw data diff = np.array(inp.shape.spatial_shape, dtype=np.int32) - np.array( trainee_out.shape.spatial_shape, dtype=np.int32) assert not np.any(diff % 2) raw_inp = nm.Crop(inp, list((diff // 2))) conv0 = nm.Conv(raw_inp, 5, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") conv1 = nm.Conv(conv0, 10, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") down0 = nm.Pool(conv1, (1, 2, 2), mode='max') # mid res conv2 = nm.Conv(down0, 10, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") conv3 = nm.Conv(conv2, 15, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") # Merging low-res with mid-res features mrg1 = nm.UpConvMerge(conv1, conv3, 20, name="upconv_adv") mconv2 = nm.Conv(mrg1, 15, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") raw_out = nm.Conv(mconv2, 15, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") # segmentation conv0 = nm.Conv(adv_input, 5, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") conv1 = nm.Conv(conv0, 10, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") down0 = nm.Pool(conv1, (1, 2, 2), mode='max') # mid res conv2 = nm.Conv(down0, 10, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") conv3 = nm.Conv(conv2, 15, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") # Merging low-res with mid-res features mrg1 = nm.UpConvMerge(conv1, conv3, 20, name="upconv_adv") mconv2 = nm.Conv(mrg1, 15, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") seg_out = nm.Conv(mconv2, 15, (2, 3, 3), activation_func=act, dropout_rate=dr, name="conv_adv") out = nm.Concat([raw_out, seg_out], axis="f") out = nm.Conv(out, 20, (2, 5, 5), pool_shape=(1, 2, 2), activation_func=act, dropout_rate=dr, name="conv_adv") out = nm.Conv(out, 40, (2, 3, 3), pool_shape=(1, 2, 2), activation_func=act, dropout_rate=dr, name="conv_adv") out = nm.Conv(out, 60, (2, 2, 2), pool_shape=(1, 2, 2), activation_func=act, dropout_rate=dr, name="conv_adv") dec = nm.Perceptron(out, 2, flatten=True, activation_func='lin', name="perc_adv") adv_out = nm.Softmax(dec) # as in orig. GAN paper of Godfellow et al. only the positive label is taken # into account (i.e. adversarial network predicts input is ground truth) # for the adv. prediction loss when training the trainee # if training the adv. network only the binary cross-entropy of the adv. # prediction is backpropagated. adv_loss = nm.MultinoulliNLL(adv_out, adv_target, target_is_sparse=True, name='nll_adversarial', class_weights=None) loss = nm.AggregateLoss([adv_loss, trainee_loss], mixing_weights=None, name='loss_adversarial') model = nm.model_manager.getmodel() model.designate_nodes( input_node=inp, target_node=trainee.target_node, loss_node=loss, prediction_node=trainee.prediction_node, prediction_ext=trainee.prediction_ext, ) return model
test_vals = np.array([1, 2, 3], dtype=np.float32) skel = DummySkel() print(f(test_vals, skel)) print(f_grad(test_vals, skel)) theano.printing.pydotprint(f_grad, '/tmp/step_result.svg') ########################################################################### from elektronn2 import neuromancer import theano act = 'tanh' data = neuromancer.Input((1, 20), 'b,f', name='data') mem_0 = neuromancer.Input((1, 120), 'b,f', name='mem') mlp1 = neuromancer.Dot(data, 120, activation_func=act) join = neuromancer.Concat([mlp1, mem_0]) out = neuromancer.Dot(join, 120, activation_func=act) out2 = neuromancer.Dot(out, 13, activation_func='lin') # recurrent = neuromancer.Scan(out, in_memory=mem_0, n_steps=10) recurrent, out2r = neuromancer.Scan([out, out2], out_memory=out, in_memory=mem_0, n_steps=7) loss = neuromancer.AggregateLoss(recurrent) loss = neuromancer.AggregateLoss(out2r) grad = theano.grad(loss.output, loss.all_trainable_params.values(), disconnected_inputs='warn') recurrent()
def demo_new_gm(): mfp = False in_sh = (1, 1, 15, 198, 198) if mfp else (1, 1, 25, 171, 171) inp = neuromancer.Input(in_sh, 'b,f,z,x,y', name='raw') out = neuromancer.Conv(inp, 20, (1, 6, 6), (1, 1, 1), mfp=mfp, batch_normalisation='train') out = neuromancer.Conv(out, 40, (1, 5, 5), (1, 2, 2), mfp=mfp) out = neuromancer.Conv(out, 50, (1, 4, 4), (1, 2, 2), mfp=mfp) out = neuromancer.Conv(out, 80, (1, 4, 4), (1, 1, 1), mfp=mfp) out = neuromancer.Conv(out, 80, (4, 1, 1), (2, 1, 1), mfp=mfp) # first z kernel, 2 pool out = neuromancer.Conv(out, 80, (3, 4, 4), (1, 1, 1), mfp=mfp) out = neuromancer.Conv(out, 80, (3, 4, 4), (1, 1, 1), mfp=mfp) out = neuromancer.Conv(out, 100, (2, 4, 4), (1, 1, 1), mfp=mfp) out = neuromancer.Conv(out, 120, (2, 4, 4), (1, 1, 1), mfp=mfp) out = neuromancer.Conv(out, 120, (1, 2, 2), (1, 1, 1), mfp=mfp) out = neuromancer.Conv(out, 120, (1, 1, 1), (1, 1, 1), mfp=mfp) out1, out2 = neuromancer.split(out, 1, n_out=2) probs = neuromancer.Conv(out1, 2, (1, 1, 1), (1, 1, 1), mfp=mfp, activation_func='lin') probs = neuromancer.Softmax(probs, name='probs') discard, mode = neuromancer.split(probs, 1, n_out=2) concentration = neuromancer.Conv(out2, 1, (1, 1, 1), (1, 1, 1), mfp=mfp, activation_func='lin', name='concentration') t_sh = probs.shape.copy() t_sh.updateshape('f', 1) target = neuromancer.Input_like(t_sh, dtype='float32', name='target') loss_pix = neuromancer.BetaNLL(mode, concentration, target) loss = neuromancer.AggregateLoss(loss_pix) errors = neuromancer.Errors(probs, target, target_is_sparse=True) prediction = neuromancer.Concat([mode, concentration], axis=1, name='prediction') loss_std = neuromancer.ApplyFunc(loss_pix, T.std) model = neuromancer.model_manager.getmodel() model.designate_nodes(input_node=inp, target_node=target, loss_node=loss, prediction_node=prediction, prediction_ext=[loss, errors, prediction]) ### --- ### model2 = neuromancer.model_manager.newmodel("second") inp2 = neuromancer.Input(in_sh, 'b,f,z,x,y', name='raw') out2 = neuromancer.Conv(inp2, 20, (1, 6, 6), (1, 1, 1), mfp=mfp) out2 = neuromancer.Conv(out2, 40, (1, 5, 5), (1, 2, 2), mfp=mfp) out2 = neuromancer.Conv(out2, 50, (1, 4, 4), (1, 2, 2), mfp=mfp) out2 = neuromancer.Conv(out2, 120, (2, 4, 4), (1, 1, 1), mfp=mfp) out2 = neuromancer.Conv(out2, 120, (1, 2, 2), (1, 1, 1), mfp=mfp) out2 = neuromancer.Conv(out2, 120, (1, 1, 1), (1, 1, 1), mfp=mfp) probs2 = neuromancer.Conv(out2, 2, (1, 1, 1), (1, 1, 1), mfp=mfp, activation_func='lin') probs2 = neuromancer.Softmax(probs2, name='probs') t_sh = probs2.shape.copy() t_sh.updateshape('f', 1) target2 = neuromancer.Input_like(t_sh, dtype='float32', name='target') loss_pix2 = neuromancer.MultinoulliNLL(probs2, target2) loss2 = neuromancer.AggregateLoss(loss_pix2) errors2 = neuromancer.Errors(probs2, target2, target_is_sparse=True) model2.designate_nodes(input_node=inp2, target_node=target2, loss_node=loss2, prediction_node=probs2, prediction_ext=[loss2, errors2, probs2]) model.save('/tmp/test.pkl') model2.save('/tmp/test2.pkl') model2_reloaded = modelload('/tmp/test2.pkl') model2_reloaded.save('/tmp/test2_reloaded.pkl') print(neuromancer.model_manager)