예제 #1
0
def create_model():
    from elektronn2 import neuromancer
    import theano.tensor as T
    import numpy as np

    in_sh = (None,1,572-32*9,572-32*9)
    img = neuromancer.Input(in_sh, 'b,f,x,y', name='raw')

    out0  = neuromancer.Conv(img,  64,  (3,3), (1,1))
    out1  = neuromancer.Conv(out0, 64,  (3,3), (1,1))
    out2  = neuromancer.Pool(out1, (2,2))

    out3  = neuromancer.Conv(out2, 128,  (3,3), (1,1))
    out4  = neuromancer.Conv(out3, 128,  (3,3), (1,1))
    out5  = neuromancer.Pool(out4, (2,2))

    out6  = neuromancer.Conv(out5, 256,  (3,3), (1,1))
    out7  = neuromancer.Conv(out6, 256,  (3,3), (1,1))
    out8  = neuromancer.Pool(out7, (2,2))

    out9  = neuromancer.Conv(out8, 512,  (3,3), (1,1))
    out10 = neuromancer.Conv(out9, 512,  (3,3), (1,1))
    out11 = neuromancer.Pool(out10, (2,2))

    out12 = neuromancer.Conv(out11, 1024,  (3,3), (1,1))
    out13 = neuromancer.Conv(out12, 1024,  (3,3), (1,1))
    out14 = neuromancer.Pool(out13, (2,2))

    ####

    up0 = neuromancer.UpConvMerge(out10, out14, 1024)
    up1 = neuromancer.Conv(up0, 512,  (3,3), (1,1))
    up2 = neuromancer.Conv(up1, 512,  (3,3), (1,1))

    up3 = neuromancer.UpConvMerge(out7, up2, 512)
    up4 = neuromancer.Conv(up3, 256,  (3,3), (1,1))
    up5 = neuromancer.Conv(up4, 256,  (3,3), (1,1))

    up6 = neuromancer.UpConvMerge(out4, up5, 256)
    up7 = neuromancer.Conv(up6, 128,  (3,3), (1,1))
    up8 = neuromancer.Conv(up7, 128,  (3,3), (1,1))

    up9 = neuromancer.UpConvMerge(out1, up8, 128)
    up10 = neuromancer.Conv(up9, 64,  (3,3), (1,1))
    top_feat = neuromancer.Conv(up10, 64,  (3,3), (1,1))


    # Target outputs
    barr_out = neuromancer.Conv(top_feat,  3, (1,1), (1,1), activation_func='lin', name='barr')
    obj_out  = neuromancer.Conv(top_feat,  4, (1,1), (1,1), activation_func='lin', name='obj')
    my_out   = neuromancer.Conv(top_feat,  3, (1,1), (1,1), activation_func='lin', name='my')
    barr_out = neuromancer.Softmax(barr_out)
    obj_out  = neuromancer.Softmax(obj_out)
    my_out   = neuromancer.Softmax(my_out)

    target   = neuromancer.Input_like(top_feat, dtype='int16', override_f=3, name='target')
    barr, obj, my = neuromancer.split(target, 'f', n_out=3, name=['barr_t', 'obj_t', 'my_t'])

    # Target loss
    barr_loss_pix = neuromancer.MultinoulliNLL(barr_out, barr, target_is_sparse=True,name='nll_barr')
    obj_loss_pix  = neuromancer.MultinoulliNLL(obj_out, obj, target_is_sparse=True, name='nll_obj')
    my_loss_pix   = neuromancer.MultinoulliNLL(my_out, my, target_is_sparse=True, name='nll_my')
    pred          = neuromancer.Concat([barr_out, obj_out, my_out], axis='f')
    pred.feature_names = ['barrier_bg', 'barr_mem', 'barr_ecs', 'obj_bg',
                          'obj_mito', 'obj_ves', 'obj_syn', 'my_bg', 'my_out', 'my_in']

    # Objective
    weights = np.array([2.154, 0.42, 0.42])
    weights *= len(weights) / weights.sum()
    loss = neuromancer.AggregateLoss([barr_loss_pix,
                                      obj_loss_pix,
                                      my_loss_pix],
                                      mixing_weights=weights)
    # Monitoring  / Debug outputs
    nll_barr   = neuromancer.ApplyFunc(barr_loss_pix, T.mean, name='mnll_barr')
    nll_obj    = neuromancer.ApplyFunc(obj_loss_pix, T.mean, name='mnll_obj')
    nll_my   = neuromancer.ApplyFunc(my_loss_pix, T.mean, name='mnll_my')
    errors = neuromancer.Errors(barr_out, barr, target_is_sparse=True)

    model = neuromancer.model_manager.getmodel()
    model.designate_nodes(input_node=img, target_node=target, loss_node=loss,
                                  prediction_node=pred,
                                  prediction_ext=[loss, errors, pred],
                                  debug_outputs =[nll_barr, errors, nll_obj, nll_my])

    return model
예제 #2
0
def create_model():
    from elektronn2 import neuromancer

    act = 'relu'
    in_sh = (batch_size, 4, 3, 128, 256)
    inp = neuromancer.Input(in_sh, 'b,f,z,y,x', name='raw')

    out0 = neuromancer.Conv(inp,
                            13, (1, 5, 5), (1, 2, 2),
                            activation_func=act,
                            dropout_rate=dr)
    out0 = neuromancer.Conv(out0,
                            19, (1, 5, 5), (1, 2, 2),
                            activation_func=act,
                            dropout_rate=dr)
    out0 = neuromancer.Conv(out0,
                            25, (1, 4, 4), (1, 2, 2),
                            activation_func=act,
                            dropout_rate=dr)
    out0 = neuromancer.Conv(out0,
                            25, (1, 4, 4), (1, 2, 2),
                            activation_func=act,
                            dropout_rate=dr)
    out0 = neuromancer.Conv(out0,
                            30, (1, 2, 2), (1, 2, 2),
                            activation_func=act,
                            dropout_rate=dr)
    out0 = neuromancer.Conv(out0,
                            30, (1, 1, 1), (1, 2, 2),
                            activation_func=act,
                            dropout_rate=dr)
    out = neuromancer.Conv(out0,
                           31, (1, 1, 1), (1, 1, 1),
                           activation_func=act,
                           dropout_rate=dr)
    out0, out1, out2 = neuromancer.split(out, axis="z", n_out=3)
    out0 = neuromancer.Reshape(out0,
                               shape=(inp.shape[0], out0.shape.stripbatch_prod,
                                      1),
                               tags="b,f,z")
    out1 = neuromancer.Reshape(out1,
                               shape=(inp.shape[0], out1.shape.stripbatch_prod,
                                      1),
                               tags="b,f,z")
    out2 = neuromancer.Reshape(out2,
                               shape=(inp.shape[0], out2.shape.stripbatch_prod,
                                      1),
                               tags="b,f,z")
    out = neuromancer.Concat([out0, out1, out2], axis="z")
    out = neuromancer.Perceptron(out, 40, flatten=False, dropout_rate=dr)
    out = neuromancer.Perceptron(out, 10, flatten=False, dropout_rate=dr)
    out0, out1, out2 = neuromancer.split(out, axis="z", n_out=3)
    d_small = neuromancer.EuclideanDistance(out0, out1)
    d_big = neuromancer.EuclideanDistance(out0, out2)
    loss = neuromancer.RampLoss(d_small, d_big, margin=0.2)
    loss = neuromancer.AggregateLoss(loss)
    model = neuromancer.model_manager.getmodel()
    # model = neuromancer.model.modelload("/wholebrain/scratch/pschuber/CNN_Training/nupa_cnn/t_net/ssv6_tripletnet_v9/ssv6_tripletnet_v9-FINAL.mdl")
    model.designate_nodes(input_node=inp,
                          target_node=None,
                          loss_node=loss,
                          prediction_node=out,
                          prediction_ext=[loss, loss, out])

    # params = neuromancer.model.params_from_model_file("/wholebrain/scratch/pschuber/CNN_Training/nupa_cnn/t_net/ssv6_tripletnet_v9/ssv6_tripletnet_v9-FINAL.mdl")
    # params = dict(filter(lambda x: x[0].startswith('conv'), params.items()))
    # model.set_param_values(params)
    return model


# if __name__ == "__main__":
# model = create_model()
# "Test" if model is saveable
# model.save("/tmp/"+save_name)
예제 #3
0
def create_model():
    from elektronn2 import neuromancer as nm
    trainee = trainee_dict["create_model"]()
    inp = trainee.input_node
    trainee_gt = trainee.target_node
    trainee_out = trainee.prediction_node
    trainee_loss = trainee.loss_node
    adv_input, adv_target = nm.advmerge(trainee_out, trainee_gt)

    # raw data
    diff = np.array(inp.shape.spatial_shape, dtype=np.int32) - np.array(
        trainee_out.shape.spatial_shape, dtype=np.int32)
    assert not np.any(diff % 2)
    raw_inp = nm.Crop(inp, list((diff // 2)))
    conv0 = nm.Conv(raw_inp,
                    5, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    conv1 = nm.Conv(conv0,
                    10, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    down0 = nm.Pool(conv1, (1, 2, 2), mode='max')  # mid res
    conv2 = nm.Conv(down0,
                    10, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    conv3 = nm.Conv(conv2,
                    15, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    # Merging low-res with mid-res features
    mrg1 = nm.UpConvMerge(conv1, conv3, 20, name="upconv_adv")
    mconv2 = nm.Conv(mrg1,
                     15, (2, 3, 3),
                     activation_func=act,
                     dropout_rate=dr,
                     name="conv_adv")
    raw_out = nm.Conv(mconv2,
                      15, (2, 3, 3),
                      activation_func=act,
                      dropout_rate=dr,
                      name="conv_adv")

    # segmentation
    conv0 = nm.Conv(adv_input,
                    5, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    conv1 = nm.Conv(conv0,
                    10, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    down0 = nm.Pool(conv1, (1, 2, 2), mode='max')  # mid res
    conv2 = nm.Conv(down0,
                    10, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    conv3 = nm.Conv(conv2,
                    15, (2, 3, 3),
                    activation_func=act,
                    dropout_rate=dr,
                    name="conv_adv")
    # Merging low-res with mid-res features
    mrg1 = nm.UpConvMerge(conv1, conv3, 20, name="upconv_adv")
    mconv2 = nm.Conv(mrg1,
                     15, (2, 3, 3),
                     activation_func=act,
                     dropout_rate=dr,
                     name="conv_adv")
    seg_out = nm.Conv(mconv2,
                      15, (2, 3, 3),
                      activation_func=act,
                      dropout_rate=dr,
                      name="conv_adv")

    out = nm.Concat([raw_out, seg_out], axis="f")
    out = nm.Conv(out,
                  20, (2, 5, 5),
                  pool_shape=(1, 2, 2),
                  activation_func=act,
                  dropout_rate=dr,
                  name="conv_adv")
    out = nm.Conv(out,
                  40, (2, 3, 3),
                  pool_shape=(1, 2, 2),
                  activation_func=act,
                  dropout_rate=dr,
                  name="conv_adv")
    out = nm.Conv(out,
                  60, (2, 2, 2),
                  pool_shape=(1, 2, 2),
                  activation_func=act,
                  dropout_rate=dr,
                  name="conv_adv")
    dec = nm.Perceptron(out,
                        2,
                        flatten=True,
                        activation_func='lin',
                        name="perc_adv")
    adv_out = nm.Softmax(dec)

    # as in orig. GAN paper of Godfellow et al. only the positive label is taken
    # into account (i.e. adversarial network predicts input is ground truth)
    # for the adv. prediction loss when training the trainee
    # if training the adv. network only the binary cross-entropy of the adv.
    # prediction is backpropagated.
    adv_loss = nm.MultinoulliNLL(adv_out,
                                 adv_target,
                                 target_is_sparse=True,
                                 name='nll_adversarial',
                                 class_weights=None)
    loss = nm.AggregateLoss([adv_loss, trainee_loss],
                            mixing_weights=None,
                            name='loss_adversarial')

    model = nm.model_manager.getmodel()
    model.designate_nodes(
        input_node=inp,
        target_node=trainee.target_node,
        loss_node=loss,
        prediction_node=trainee.prediction_node,
        prediction_ext=trainee.prediction_ext,
    )
    return model
예제 #4
0
    test_vals = np.array([1, 2, 3], dtype=np.float32)
    skel = DummySkel()

    print(f(test_vals, skel))
    print(f_grad(test_vals, skel))
    theano.printing.pydotprint(f_grad, '/tmp/step_result.svg')

    ###########################################################################

    from elektronn2 import neuromancer
    import theano
    act = 'tanh'
    data = neuromancer.Input((1, 20), 'b,f', name='data')
    mem_0 = neuromancer.Input((1, 120), 'b,f', name='mem')
    mlp1 = neuromancer.Dot(data, 120, activation_func=act)
    join = neuromancer.Concat([mlp1, mem_0])
    out = neuromancer.Dot(join, 120, activation_func=act)
    out2 = neuromancer.Dot(out, 13, activation_func='lin')
    # recurrent    = neuromancer.Scan(out, in_memory=mem_0, n_steps=10)
    recurrent, out2r = neuromancer.Scan([out, out2],
                                        out_memory=out,
                                        in_memory=mem_0,
                                        n_steps=7)
    loss = neuromancer.AggregateLoss(recurrent)
    loss = neuromancer.AggregateLoss(out2r)

    grad = theano.grad(loss.output,
                       loss.all_trainable_params.values(),
                       disconnected_inputs='warn')

    recurrent()
예제 #5
0
def demo_new_gm():
    mfp = False
    in_sh = (1, 1, 15, 198, 198) if mfp else (1, 1, 25, 171, 171)
    inp = neuromancer.Input(in_sh, 'b,f,z,x,y', name='raw')

    out = neuromancer.Conv(inp,
                           20, (1, 6, 6), (1, 1, 1),
                           mfp=mfp,
                           batch_normalisation='train')
    out = neuromancer.Conv(out, 40, (1, 5, 5), (1, 2, 2), mfp=mfp)
    out = neuromancer.Conv(out, 50, (1, 4, 4), (1, 2, 2), mfp=mfp)
    out = neuromancer.Conv(out, 80, (1, 4, 4), (1, 1, 1), mfp=mfp)

    out = neuromancer.Conv(out, 80, (4, 1, 1), (2, 1, 1),
                           mfp=mfp)  # first z kernel, 2 pool
    out = neuromancer.Conv(out, 80, (3, 4, 4), (1, 1, 1), mfp=mfp)
    out = neuromancer.Conv(out, 80, (3, 4, 4), (1, 1, 1), mfp=mfp)
    out = neuromancer.Conv(out, 100, (2, 4, 4), (1, 1, 1), mfp=mfp)

    out = neuromancer.Conv(out, 120, (2, 4, 4), (1, 1, 1), mfp=mfp)
    out = neuromancer.Conv(out, 120, (1, 2, 2), (1, 1, 1), mfp=mfp)

    out = neuromancer.Conv(out, 120, (1, 1, 1), (1, 1, 1), mfp=mfp)
    out1, out2 = neuromancer.split(out, 1, n_out=2)

    probs = neuromancer.Conv(out1,
                             2, (1, 1, 1), (1, 1, 1),
                             mfp=mfp,
                             activation_func='lin')
    probs = neuromancer.Softmax(probs, name='probs')
    discard, mode = neuromancer.split(probs, 1, n_out=2)

    concentration = neuromancer.Conv(out2,
                                     1, (1, 1, 1), (1, 1, 1),
                                     mfp=mfp,
                                     activation_func='lin',
                                     name='concentration')
    t_sh = probs.shape.copy()
    t_sh.updateshape('f', 1)
    target = neuromancer.Input_like(t_sh, dtype='float32', name='target')

    loss_pix = neuromancer.BetaNLL(mode, concentration, target)
    loss = neuromancer.AggregateLoss(loss_pix)
    errors = neuromancer.Errors(probs, target, target_is_sparse=True)
    prediction = neuromancer.Concat([mode, concentration],
                                    axis=1,
                                    name='prediction')

    loss_std = neuromancer.ApplyFunc(loss_pix, T.std)

    model = neuromancer.model_manager.getmodel()
    model.designate_nodes(input_node=inp,
                          target_node=target,
                          loss_node=loss,
                          prediction_node=prediction,
                          prediction_ext=[loss, errors, prediction])

    ### --- ###

    model2 = neuromancer.model_manager.newmodel("second")
    inp2 = neuromancer.Input(in_sh, 'b,f,z,x,y', name='raw')

    out2 = neuromancer.Conv(inp2, 20, (1, 6, 6), (1, 1, 1), mfp=mfp)
    out2 = neuromancer.Conv(out2, 40, (1, 5, 5), (1, 2, 2), mfp=mfp)
    out2 = neuromancer.Conv(out2, 50, (1, 4, 4), (1, 2, 2), mfp=mfp)

    out2 = neuromancer.Conv(out2, 120, (2, 4, 4), (1, 1, 1), mfp=mfp)
    out2 = neuromancer.Conv(out2, 120, (1, 2, 2), (1, 1, 1), mfp=mfp)

    out2 = neuromancer.Conv(out2, 120, (1, 1, 1), (1, 1, 1), mfp=mfp)

    probs2 = neuromancer.Conv(out2,
                              2, (1, 1, 1), (1, 1, 1),
                              mfp=mfp,
                              activation_func='lin')
    probs2 = neuromancer.Softmax(probs2, name='probs')
    t_sh = probs2.shape.copy()
    t_sh.updateshape('f', 1)
    target2 = neuromancer.Input_like(t_sh, dtype='float32', name='target')

    loss_pix2 = neuromancer.MultinoulliNLL(probs2, target2)
    loss2 = neuromancer.AggregateLoss(loss_pix2)
    errors2 = neuromancer.Errors(probs2, target2, target_is_sparse=True)
    model2.designate_nodes(input_node=inp2,
                           target_node=target2,
                           loss_node=loss2,
                           prediction_node=probs2,
                           prediction_ext=[loss2, errors2, probs2])

    model.save('/tmp/test.pkl')
    model2.save('/tmp/test2.pkl')
    model2_reloaded = modelload('/tmp/test2.pkl')
    model2_reloaded.save('/tmp/test2_reloaded.pkl')

    print(neuromancer.model_manager)