예제 #1
0
def __csd_correlation(v, m):
    '''compute correlation coefficient between CSD estimate and CSD
    for a given source diameter'''
    if m == 'delta':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.DeltaiCSD(**icsd_input[m])
        corrcoef = pl.corrcoef(
            CSD_filtered.flatten(),
            pl.array(_icsd.filter_csd(_icsd.get_csd()) / pq.m).flatten())
    elif m == 'step':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.StepiCSD(**icsd_input[m])
        corrcoef = pl.corrcoef(
            CSD_filtered.flatten(),
            pl.array(_icsd.filter_csd(_icsd.get_csd()) / pq.m).flatten())
    elif m == 'spline':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.SplineiCSD(**icsd_input[m])
        corrcoef = pl.corrcoef(
            CSD76ptF.flatten(),
            pl.array(_icsd.filter_csd(_icsd.get_csd()) / pq.m).flatten())
    else:
        raise Exception, 'm = %s should be either [delta, step, spline]' % m

    return corrcoef[0, -1]
예제 #2
0
    def test_DeltaiCSD_04(self):
        '''test non-continous z_j array'''
        # set some parameters for ground truth csd and csd estimates., e.g.,
        # we will use same source diameter as in ground truth

        # contact point coordinates
        z_j = np.arange(21) * 1E-4 * pq.m

        # source coordinates
        z_i = z_j

        # current source density magnitude
        C_i = np.zeros(z_i.size) * pq.A / pq.m**2
        C_i[7:12:2] += np.array([-.5, 1., -.5]) * pq.A / pq.m**2

        # source radius (delta, step)
        R_i = np.ones(z_j.size) * 1E-3 * pq.m

        # conductivity, use same conductivity for top layer (z_j < 0)
        sigma = 0.3 * pq.S / pq.m
        sigma_top = sigma

        # flag for debug plots
        plot = False

        # get LFP and CSD at contacts
        phi_j, C_i = get_lfp_of_disks(z_j, z_i, C_i, R_i, sigma,
                                      plot)
        inds = np.delete(np.arange(21), 5)
        delta_input = {
            'lfp': phi_j[inds],
            'coord_electrode': z_j[inds],
            'diam': R_i[inds] * 2,        # source diameter
            'sigma': sigma,           # extracellular conductivity
            'sigma_top': sigma_top,       # conductivity on top of cortex
            'f_type': 'gaussian',  # gaussian filter
            'f_order': (3, 1),     # 3-point filter, sigma = 1.
        }

        delta_icsd = icsd.DeltaiCSD(**delta_input)
        csd = delta_icsd.get_csd()

        self.assertEqual(C_i.units, csd.units)
        nt.assert_array_almost_equal(C_i[inds], csd)
예제 #3
0
def __csd_error(v, m):
    '''using squared difference summed'''
    if m == 'delta':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.DeltaiCSD(**icsd_input[m])
        error = (
            (pl.array(_icsd.filter_csd(_icsd.get_csd()) /
                      (100E-6 * pq.m)).reshape(CSD_filtered.size) * 1E-9 -
             CSD_filtered.reshape(CSD_filtered.size))**2).sum()
    elif m == 'step':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.StepiCSD(**icsd_input[m])
        error = ((pl.array(_icsd.filter_csd(_icsd.get_csd())).reshape(
            CSD_filtered.size) * 1E-9 -
                  CSD_filtered.reshape(CSD_filtered.size))**2).sum()
    elif m == 'spline':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.SplineiCSD(**icsd_input[m])
        error = ((pl.array(_icsd.filter_csd(_icsd.get_csd())).reshape(
            CSD76ptF.size) * 1E-9 - CSD76ptF.reshape(CSD76ptF.size))**2).sum()
    else:
        raise Exception, 'm = %s should be either [delta, step, spline]' % m

    return error
예제 #4
0
    'axis': 'tight',
    'legend': False,
    'new_fig': True
}

icsd_input = input_init(lfp_data=electrodeLFP[:16, :] * pq.mV,
                        z_data=pl.linspace(100, 1600, 16) * 1E-6 * pq.m,
                        diam=icsd_diam * pq.m)
icsd_output = {}
diam_best = {}

my_errors = {}
my_diams = {}
for m in icsd_input:
    if m == 'delta':
        _icsd = icsd.DeltaiCSD(**icsd_input[m])
        icsd_output.update({
            'icsd_delta':
            _icsd.filter_csd(_icsd.get_csd()) / (100E-6 * pq.m) * 1E-9
        })

        my_errors['delta'], my_diams['delta'], diam_best['delta'] = \
            minimize_icsd_error_brute(m)
        icsd_input[m].update({'diam': diam_best['delta'] * pq.m})

        print 'best diameter delta: %.5e' % diam_best['delta']
        _icsd = icsd.DeltaiCSD(**icsd_input[m])
        icsd_output.update({
            'icsd_delta':
            _icsd.filter_csd(_icsd.get_csd()) / (100E-6 * pq.m) * 1E-9
        })