예제 #1
0
 def test_victor_purpura_algorithm_comparison(self):
     assert_array_almost_equal(
         stds.victor_purpura_dist([self.st21, self.st22, self.st23],
                                  self.q3),
         stds.victor_purpura_dist([self.st21, self.st22, self.st23],
                                  self.q3,
                                  algorithm='intuitive'))
예제 #2
0
 def victor_purpura(simulObj, q):
     vpd_spikes = [
         neo.SpikeTrain(x,
                        units='milliseconds',
                        t_start=simulObj.t0,
                        t_stop=simulObj.tf) for x in simulObj.spikes
     ]
     vpd_distance = spktd.victor_purpura_dist(vpd_spikes,
                                              sort=False,
                                              q=q * pq.Hz)
     return vpd_distance
예제 #3
0
    def test_wrong_input(self):
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.array1, self.array2], self.q3)
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2], self.q3)
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2], 5.0 * ms)

        self.assertRaises(TypeError,
                          stds.victor_purpura_dist, [self.array1, self.array2],
                          self.q3,
                          algorithm='intuitive')
        self.assertRaises(TypeError,
                          stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2],
                          self.q3,
                          algorithm='intuitive')
        self.assertRaises(TypeError,
                          stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2],
                          5.0 * ms,
                          algorithm='intuitive')

        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.array1, self.array2], self.tau3)
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.qarray1, self.qarray2], self.tau3)
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.qarray1, self.qarray2], 5.0 * Hz)

        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.st11, self.st13], self.tau2)
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.st11, self.st13], 5.0)
        self.assertRaises(TypeError,
                          stds.victor_purpura_dist, [self.st11, self.st13],
                          self.tau2,
                          algorithm='intuitive')
        self.assertRaises(TypeError,
                          stds.victor_purpura_dist, [self.st11, self.st13],
                          5.0,
                          algorithm='intuitive')
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.st11, self.st13], self.q4)
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.st11, self.st13], 5.0)

        self.assertRaises(NotImplementedError,
                          stds.victor_purpura_dist, [self.st01, self.st02],
                          self.q3,
                          kernel=kernels.Kernel(2.0 / self.q3))
        self.assertRaises(NotImplementedError,
                          stds.victor_purpura_dist, [self.st01, self.st02],
                          self.q3,
                          kernel=kernels.SymmetricKernel(2.0 / self.q3))
        self.assertEqual(
            stds.victor_purpura_dist([self.st01, self.st02],
                                     self.q1,
                                     kernel=kernels.TriangularKernel(
                                         2.0 / (np.sqrt(6.0) * self.q2)))[0,
                                                                          1],
            stds.victor_purpura_dist([self.st01, self.st02],
                                     self.q3,
                                     kernel=kernels.TriangularKernel(
                                         2.0 / (np.sqrt(6.0) * self.q2)))[0,
                                                                          1])
        self.assertEqual(
            stds.victor_purpura_dist([self.st01, self.st02],
                                     kernel=kernels.TriangularKernel(
                                         2.0 / (np.sqrt(6.0) * self.q2)))[0,
                                                                          1],
            1.0)
        self.assertNotEqual(
            stds.victor_purpura_dist([self.st01, self.st02],
                                     kernel=kernels.AlphaKernel(
                                         2.0 / (np.sqrt(6.0) * self.q2)))[0,
                                                                          1],
            1.0)

        self.assertRaises(NameError,
                          stds.victor_purpura_dist, [self.st11, self.st13],
                          self.q2,
                          algorithm='slow')
예제 #4
0
 def test_victor_purpura_distance_intuitive(self):
     # Tests of distances of simplest spike trains
     self.assertEqual(
         stds.victor_purpura_dist([self.st00, self.st00],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 0.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st00, self.st01],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 1.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st01, self.st00],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 1.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st01, self.st01],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 0.0)
     # Tests of distances under elementary spike operations
     self.assertEqual(
         stds.victor_purpura_dist([self.st01, self.st02],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 1.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st01, self.st03],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 1.9)
     self.assertEqual(
         stds.victor_purpura_dist([self.st01, self.st04],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 2.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st01, self.st05],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 2.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st00, self.st07],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 2.0)
     self.assertAlmostEqual(
         stds.victor_purpura_dist([self.st07, self.st08],
                                  self.q4,
                                  algorithm='intuitive')[0, 1], 0.4)
     self.assertAlmostEqual(
         stds.victor_purpura_dist([self.st07, self.st10],
                                  self.q3,
                                  algorithm='intuitive')[0, 1], 2.6)
     self.assertEqual(
         stds.victor_purpura_dist([self.st11, self.st14],
                                  self.q2,
                                  algorithm='intuitive')[0, 1], 1)
     # Tests on timescales
     self.assertEqual(
         stds.victor_purpura_dist([self.st11, self.st14],
                                  self.q1,
                                  algorithm='intuitive')[0, 1],
         stds.victor_purpura_dist([self.st11, self.st14],
                                  self.q5,
                                  algorithm='intuitive')[0, 1])
     self.assertEqual(
         stds.victor_purpura_dist([self.st07, self.st11],
                                  self.q0,
                                  algorithm='intuitive')[0, 1], 6.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st07, self.st11],
                                  self.q1,
                                  algorithm='intuitive')[0, 1], 6.0)
     self.assertAlmostEqual(
         stds.victor_purpura_dist([self.st07, self.st11],
                                  self.q5,
                                  algorithm='intuitive')[0, 1], 2.0, 5)
     self.assertEqual(
         stds.victor_purpura_dist([self.st07, self.st11],
                                  self.q6,
                                  algorithm='intuitive')[0, 1], 2.0)
     # Tests on unordered spiketrains
     self.assertEqual(
         stds.victor_purpura_dist([self.st11, self.st13],
                                  self.q4,
                                  algorithm='intuitive')[0, 1],
         stds.victor_purpura_dist([self.st12, self.st13],
                                  self.q4,
                                  algorithm='intuitive')[0, 1])
     self.assertNotEqual(
         stds.victor_purpura_dist([self.st11, self.st13],
                                  self.q4,
                                  sort=False,
                                  algorithm='intuitive')[0, 1],
         stds.victor_purpura_dist([self.st12, self.st13],
                                  self.q4,
                                  sort=False,
                                  algorithm='intuitive')[0, 1])
     # Tests on metric properties with random spiketrains
     # (explicit calculation of second metric axiom in particular case,
     # because from dist_matrix it is trivial)
     dist_matrix = stds.victor_purpura_dist(
         [self.st21, self.st22, self.st23], self.q3, algorithm='intuitive')
     for i in range(3):
         for j in range(3):
             self.assertGreaterEqual(dist_matrix[i, j], 0)
             if dist_matrix[i, j] == 0:
                 assert_array_equal(self.rd_st_list[i], self.rd_st_list[j])
     assert_array_equal(
         stds.victor_purpura_dist([self.st21, self.st22],
                                  self.q3,
                                  algorithm='intuitive'),
         stds.victor_purpura_dist([self.st22, self.st21],
                                  self.q3,
                                  algorithm='intuitive'))
     self.assertLessEqual(dist_matrix[0, 1],
                          dist_matrix[0, 2] + dist_matrix[1, 2])
     self.assertLessEqual(dist_matrix[0, 2],
                          dist_matrix[1, 2] + dist_matrix[0, 1])
     self.assertLessEqual(dist_matrix[1, 2],
                          dist_matrix[0, 1] + dist_matrix[0, 2])
     # Tests on proper unit conversion
     self.assertAlmostEqual(
         stds.victor_purpura_dist([self.st14, self.st16],
                                  self.q3,
                                  algorithm='intuitive')[0, 1],
         stds.victor_purpura_dist([self.st15, self.st16],
                                  self.q3,
                                  algorithm='intuitive')[0, 1])
     self.assertAlmostEqual(
         stds.victor_purpura_dist([self.st16, self.st14],
                                  self.q3,
                                  algorithm='intuitive')[0, 1],
         stds.victor_purpura_dist([self.st16, self.st15],
                                  self.q3,
                                  algorithm='intuitive')[0, 1])
     self.assertEqual(
         stds.victor_purpura_dist([self.st01, self.st05],
                                  self.q3,
                                  algorithm='intuitive')[0, 1],
         stds.victor_purpura_dist([self.st01, self.st05],
                                  self.q7,
                                  algorithm='intuitive')[0, 1])
     # Tests on algorithmic behaviour for equal spike times
     self.assertEqual(
         stds.victor_purpura_dist([self.st31, self.st34],
                                  self.q3,
                                  algorithm='intuitive')[0, 1], 0.8 + 1.0)
     self.assertEqual(
         stds.victor_purpura_dist([self.st31, self.st34],
                                  self.q3,
                                  algorithm='intuitive')[0, 1],
         stds.victor_purpura_dist([self.st32, self.st33],
                                  self.q3,
                                  algorithm='intuitive')[0, 1])
     self.assertEqual(
         stds.victor_purpura_dist(
             [self.st31, self.st33], self.q3, algorithm='intuitive')[0, 1] *
         2.0,
         stds.victor_purpura_dist([self.st32, self.st34],
                                  self.q3,
                                  algorithm='intuitive')[0, 1])
     # Tests on spike train list lengthes smaller than 2
     self.assertEqual(
         stds.victor_purpura_dist([self.st21],
                                  self.q3,
                                  algorithm='intuitive')[0, 0], 0)
     self.assertEqual(
         len(stds.victor_purpura_dist([], self.q3, algorithm='intuitive')),
         0)
    def test_wrong_input(self):
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.array1, self.array2], self.q3)
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2], self.q3)
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2], 5.0 * ms)

        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.array1, self.array2], self.q3,
                          algorithm='intuitive')
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2], self.q3,
                          algorithm='intuitive')
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.qarray1, self.qarray2], 5.0 * ms,
                          algorithm='intuitive')

        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.array1, self.array2], self.tau3)
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.qarray1, self.qarray2], self.tau3)
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.qarray1, self.qarray2], 5.0 * Hz)

        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.st11, self.st13], self.tau2)
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.st11, self.st13], 5.0)
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.st11, self.st13], self.tau2,
                          algorithm='intuitive')
        self.assertRaises(TypeError, stds.victor_purpura_dist,
                          [self.st11, self.st13], 5.0,
                          algorithm='intuitive')
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.st11, self.st13], self.q4)
        self.assertRaises(TypeError, stds.van_rossum_dist,
                          [self.st11, self.st13], 5.0)

        self.assertRaises(NotImplementedError, stds.victor_purpura_dist,
                          [self.st01, self.st02], self.q3,
                          kernel=kernels.Kernel(2.0 / self.q3))
        self.assertRaises(NotImplementedError, stds.victor_purpura_dist,
                          [self.st01, self.st02], self.q3,
                          kernel=kernels.SymmetricKernel(2.0 / self.q3))
        self.assertEqual(stds.victor_purpura_dist(
                             [self.st01, self.st02], self.q1,
                             kernel=kernels.TriangularKernel(
                                 2.0 / (np.sqrt(6.0) * self.q2)))[0, 1],
                         stds.victor_purpura_dist(
                             [self.st01, self.st02], self.q3,
                             kernel=kernels.TriangularKernel(
                                 2.0 / (np.sqrt(6.0) * self.q2)))[0, 1])
        self.assertEqual(stds.victor_purpura_dist(
                             [self.st01, self.st02],
                             kernel=kernels.TriangularKernel(
                                 2.0 / (np.sqrt(6.0) * self.q2)))[0, 1], 1.0)
        self.assertNotEqual(stds.victor_purpura_dist(
                                [self.st01, self.st02],
                                kernel=kernels.AlphaKernel(
                                   2.0 / (np.sqrt(6.0) * self.q2)))[0, 1], 1.0)

        self.assertRaises(NameError, stds.victor_purpura_dist,
                          [self.st11, self.st13], self.q2, algorithm='slow')
 def test_victor_purpura_algorithm_comparison(self):
     assert_array_almost_equal(
                 stds.victor_purpura_dist([self.st21, self.st22, self.st23],
                                          self.q3), 
                 stds.victor_purpura_dist([self.st21, self.st22, self.st23],
                                          self.q3, algorithm='intuitive'))
 def test_victor_purpura_distance_intuitive(self):
     # Tests of distances of simplest spike trains
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st00, self.st00], self.q2,
                          algorithm='intuitive')[0, 1], 0.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st00, self.st01], self.q2,
                          algorithm='intuitive')[0, 1], 1.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st01, self.st00], self.q2,
                          algorithm='intuitive')[0, 1], 1.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st01, self.st01], self.q2,
                          algorithm='intuitive')[0, 1], 0.0)
     # Tests of distances under elementary spike operations
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st01, self.st02], self.q2,
                          algorithm='intuitive')[0, 1], 1.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st01, self.st03], self.q2,
                          algorithm='intuitive')[0, 1], 1.9)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st01, self.st04], self.q2,
                          algorithm='intuitive')[0, 1], 2.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st01, self.st05], self.q2,
                          algorithm='intuitive')[0, 1], 2.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st00, self.st07], self.q2,
                          algorithm='intuitive')[0, 1], 2.0)
     self.assertAlmostEqual(stds.victor_purpura_dist(
                          [self.st07, self.st08], self.q4,
                          algorithm='intuitive')[0, 1], 0.4)
     self.assertAlmostEqual(stds.victor_purpura_dist(
                          [self.st07, self.st10], self.q3,
                          algorithm='intuitive')[0, 1], 2.6)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st11, self.st14], self.q2,
                          algorithm='intuitive')[0, 1], 1)
     # Tests on timescales
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st11, self.st14], self.q1,
                          algorithm='intuitive')[0, 1],
                      stds.victor_purpura_dist(
                          [self.st11, self.st14], self.q5,
                          algorithm='intuitive')[0, 1])
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st07, self.st11], self.q0,
                          algorithm='intuitive')[0, 1], 6.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st07, self.st11], self.q1,
                          algorithm='intuitive')[0, 1], 6.0)
     self.assertAlmostEqual(stds.victor_purpura_dist(
                          [self.st07, self.st11], self.q5,
                          algorithm='intuitive')[0, 1], 2.0, 5)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st07, self.st11], self.q6,
                          algorithm='intuitive')[0, 1], 2.0)
     # Tests on unordered spiketrains
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st11, self.st13], self.q4,
                          algorithm='intuitive')[0, 1],
                      stds.victor_purpura_dist(
                          [self.st12, self.st13], self.q4,
                          algorithm='intuitive')[0, 1])
     self.assertNotEqual(stds.victor_purpura_dist(
                             [self.st11, self.st13], self.q4,
                             sort=False, algorithm='intuitive')[0, 1],
                         stds.victor_purpura_dist(
                             [self.st12, self.st13], self.q4,
                             sort=False, algorithm='intuitive')[0, 1])
     # Tests on metric properties with random spiketrains
     # (explicit calculation of second metric axiom in particular case,
     # because from dist_matrix it is trivial)
     dist_matrix = stds.victor_purpura_dist(
                       [self.st21, self.st22, self.st23],
                       self.q3, algorithm='intuitive')
     for i in range(3):
         for j in range(3):
             self.assertGreaterEqual(dist_matrix[i, j], 0)
             if dist_matrix[i, j] == 0:
                 assert_array_equal(self.rd_st_list[i], self.rd_st_list[j])
     assert_array_equal(stds.victor_purpura_dist(
                            [self.st21, self.st22], self.q3,
                            algorithm='intuitive'),
                        stds.victor_purpura_dist(
                            [self.st22, self.st21], self.q3,
                            algorithm='intuitive'))
     self.assertLessEqual(dist_matrix[0, 1],
                          dist_matrix[0, 2] + dist_matrix[1, 2])
     self.assertLessEqual(dist_matrix[0, 2],
                          dist_matrix[1, 2] + dist_matrix[0, 1])
     self.assertLessEqual(dist_matrix[1, 2],
                          dist_matrix[0, 1] + dist_matrix[0, 2])
     # Tests on proper unit conversion
     self.assertAlmostEqual(stds.victor_purpura_dist(
                                [self.st14, self.st16], self.q3,
                                algorithm='intuitive')[0, 1],
                            stds.victor_purpura_dist(
                                [self.st15, self.st16], self.q3,
                                algorithm='intuitive')[0, 1])
     self.assertAlmostEqual(stds.victor_purpura_dist(
                                [self.st16, self.st14], self.q3,
                                algorithm='intuitive')[0, 1],
                            stds.victor_purpura_dist(
                                [self.st16, self.st15], self.q3,
                                algorithm='intuitive')[0, 1])
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st01, self.st05], self.q3,
                          algorithm='intuitive')[0, 1],
                      stds.victor_purpura_dist(
                          [self.st01, self.st05], self.q7,
                          algorithm='intuitive')[0, 1])
     # Tests on algorithmic behaviour for equal spike times
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st31, self.st34], self.q3,
                          algorithm='intuitive')[0, 1],
                      0.8 + 1.0)
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st31, self.st34], self.q3,
                          algorithm='intuitive')[0, 1],
                      stds.victor_purpura_dist(
                          [self.st32, self.st33], self.q3,
                          algorithm='intuitive')[0, 1])
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st31, self.st33], self.q3,
                          algorithm='intuitive')[0, 1] * 2.0,
                      stds.victor_purpura_dist(
                          [self.st32, self.st34], self.q3,
                          algorithm='intuitive')[0, 1])
     # Tests on spike train list lengthes smaller than 2
     self.assertEqual(stds.victor_purpura_dist(
                          [self.st21], self.q3,
                          algorithm='intuitive')[0, 0], 0)
     self.assertEqual(len(stds.victor_purpura_dist(
                          [], self.q3, algorithm='intuitive')), 0)