예제 #1
0
파일: image.py 프로젝트: openbox00/oktest
 def root_mappings(self):
     if self.file_type == Image.ROOT_PROGRAM:
         # FIXME (benno) 0x1000 is hard coded, bad!
         virt_addr = align_down(self.attrs.virt_addr, 0x1000)
         phys_addr = align_down(self.attrs.phys_addr, 0x1000)
         if (self.attrs.virt_addr - virt_addr) != \
                (self.attrs.phys_addr - phys_addr):
             raise Exception("Non congruent segment mappings, can't deal")
         size = self.attrs.size + self.attrs.virt_addr - virt_addr
         return (virt_addr, phys_addr, size)
     else:
         return None
예제 #2
0
파일: image.py 프로젝트: dafyddcrosby/L4OS
 def root_mappings(self):
     if self.file_type == Image.ROOT_PROGRAM:
         # FIXME (benno) 0x1000 is hard coded, bad!
         virt_addr = align_down(self.attrs.virt_addr, 0x1000)
         phys_addr = align_down(self.attrs.phys_addr, 0x1000)
         if (self.attrs.virt_addr - virt_addr) != \
                (self.attrs.phys_addr - phys_addr):
             raise Exception("Non congruent segment mappings, can't deal")
         size = self.attrs.size + self.attrs.virt_addr - virt_addr
         return (virt_addr, phys_addr, size)
     else:
         return None
예제 #3
0
    def mark(self, base, end):
        """
        mark(base, end) -> base
        
        Remove the given range from the free list.  This is used to
        record were fixed address objects are located.

        An exception is raised if the range crosses a free/used
        border.

        It is *not* an error if the range is wholly outside the
        freelist.
        """

        base = align_down(base, self.min_alloc)
        end = align_up(end, self.min_alloc) - 1

        #        if self is phys_alloc:
        #            print "Mark: 0x%x 0x%x" % (base, end)

        for (free_start, free_end) in self.freelist:
            # if used range is in this free range
            if base >= free_start and base <= free_end:
                # check used block not going past free range
                if end > free_end:
                    raise AllocatorException, "Used block (0x%x, 0x%x) outside avail range (0x%x, 0x%x)." % (
                        base, end, free_start, free_end)

                index = self.freelist.index((free_start, free_end))
                self.freelist.remove((free_start, free_end))

                # align ranges to page size
                free_start = align_down(free_start, self.min_alloc)
                free_end = align_up(free_end, self.min_alloc)
                base = align_down(base, self.min_alloc)
                end = align_up(end, self.min_alloc)

                # need to divide free range into zero, one or two
                # new ranges
                if free_start < base:
                    self.freelist.insert(index, (free_start, base - 1))
                    index += 1

                if end < free_end:
                    self.freelist.insert(index, (end, free_end - 1))

#        if self is phys_alloc:
#            print " =free:", [(hex(x), hex(y)) for (x, y) in self.freelist]

        return base
예제 #4
0
파일: util.py 프로젝트: dafyddcrosby/L4OS
    def mark(self, base, end):
        """
        mark(base, end) -> base
        
        Remove the given range from the free list.  This is used to
        record were fixed address objects are located.

        An exception is raised if the range crosses a free/used
        border.

        It is *not* an error if the range is wholly outside the
        freelist.
        """

        base = align_down(base, self.min_alloc)
        end = align_up(end, self.min_alloc)-1

#        if self is phys_alloc:
#            print "Mark: 0x%x 0x%x" % (base, end)

        for (free_start, free_end) in self.freelist:
            # if used range is in this free range
            if base >= free_start and base <= free_end:
                # check used block not going past free range
                if end > free_end:
                    raise AllocatorException, "Used block (0x%x, 0x%x) outside avail range (0x%x, 0x%x)." % (base, end, free_start, free_end)

                index = self.freelist.index((free_start, free_end))
                self.freelist.remove((free_start, free_end))

                # align ranges to page size
                free_start = align_down(free_start, self.min_alloc)
                free_end = align_up(free_end, self.min_alloc)
                base = align_down(base, self.min_alloc)
                end = align_up(end, self.min_alloc)

                # need to divide free range into zero, one or two
                # new ranges
                if free_start < base:
                    self.freelist.insert(index, (free_start, base-1))
                    index += 1

                if end < free_end:
                    self.freelist.insert(index, (end, free_end-1))

#        if self is phys_alloc:
#            print " =free:", [(hex(x), hex(y)) for (x, y) in self.freelist]

        return base
예제 #5
0
    def write_struct(self, section):
        """Write the binary form of the segment mapping struct."""
        section.write_word(len(self.mappings))

        for (num, _, attrs) in self.mappings:
            #
            # Align the segments to nearest page boundaries. If we have to move
            # 'virt_addr' backwards, we need to compensate by increasing 'size'
            # by the same amount.
            #
            # This is also done in kernel.py when writing out kernel mapping
            # operations.
            #
            if attrs.virt_addr is None:
                virt_addr = -1
                size = _0(attrs.size)
            else:
                virt_addr = align_down(_0(attrs.virt_addr), self.min_page_size)
                alignment_slack = _0(attrs.virt_addr) - virt_addr
                size = _0(attrs.size) + alignment_slack

            size = align_up(size, self.min_page_size)

            section.write_word(virt_addr)
            section.write_word(num) # seg
            section.write_word(0) # offset
            section.write_word(size)
            section.write_word(attrs.attach)
            section.write_word(attrs.cache_policy)
예제 #6
0
    def write_struct(self, section):
        """Write the binary form of the segment mapping struct."""
        section.write_word(len(self.mappings))

        for (num, _, attrs) in self.mappings:
            #
            # Align the segments to nearest page boundaries. If we have to move
            # 'virt_addr' backwards, we need to compensate by increasing 'size'
            # by the same amount.
            #
            # This is also done in kernel.py when writing out kernel mapping
            # operations.
            #
            if attrs.virt_addr is None:
                virt_addr = -1
                size = _0(attrs.size)
            else:
                virt_addr = align_down(_0(attrs.virt_addr), self.min_page_size)
                alignment_slack = _0(attrs.virt_addr) - virt_addr
                size = _0(attrs.size) + alignment_slack

            size = align_up(size, self.min_page_size)

            section.write_word(virt_addr)
            section.write_word(num)  # seg
            section.write_word(0)  # offset
            section.write_word(size)
            section.write_word(attrs.attach)
            section.write_word(attrs.cache_policy)
예제 #7
0
    def add_memory(self, base, size, mem_type):
        """
        Add a region of free memory to the pool.

        The memory must be ia multiple of <min_alloc_size> bytes in
        size, and aligned on a <min_alloc_size> boundary.

        Memory addresses may only be added to the allocator once. 
        """
        # Check that the memory is page aligned.
        assert align_down(base, self.min_alloc) == base
        assert size % self.min_alloc == 0

        end = base + size - 1

        # Check that the memory does not overlap any of the regions
        # already in use.
        for list_base, list_end, list_mem_type in self.fulllist:
            if (base >= list_base and base <= list_end) or \
               (end >= list_base and end <= list_end):
                raise AllocatorException, \
                      "Cannot add overlapping memory regions to the " \
                      "Allocator.  Address (0x%x--0x%x) already in " \
                      "(0x%x--0x%x)" % \
                      (base, end, list_base, list_end)

        self.fulllist.append((base, end, mem_type))
        self.freelist.append((base, end, mem_type))
        self.sort()
예제 #8
0
    def _prepare_segments(self, ofs, sh_string_table, all_sections):
        """Prepare the segments in the file for writing."""

        ph_class = ELF_PH_CLASSES[self.wordsize]
        ph_header_size = ph_class.size() * len(self.segments)
        ofs += ph_header_size
        for segment in self.segments:
            #round down
            new_ofs = align_down(ofs, segment.align)
            if segment.align != 0:
                new_ofs += segment.vaddr % segment.align
            # add extra
            if new_ofs <= ofs:
                new_ofs += segment.align

            assert new_ofs >= ofs, "New offset must be greater " \
                   "than the old offset"
            # check + add pagesize
            ofs = new_ofs
            if segment.align != 0:
                assert ofs % segment.align == segment.vaddr % segment.align, \
                       "Must be congruent"

            if segment.type == PT_PHDR:
                segment.prepare(ofs, ph_header_size)
            else:
                segment.prepare(ofs)
                # Now can prepare the sections inside it if it has any
                if segment.has_sections():
                    segment.prepare_sections(all_sections, sh_string_table)
            ofs += segment.get_filesz()

        return ofs
예제 #9
0
파일: image.py 프로젝트: dafyddcrosby/L4OS
    def __init__(self, segment, segment_index,
                 file_type, attrs, pools):
        ImageObject.__init__(self, attrs)

        self.segment       = segment
        self.segment_index = segment_index
        self.file_type     = file_type
        self.attrs.size    = segment.get_memsz()

        # Set direct addressing, if that's what's wanted.
        if self.attrs.direct:
            self.attrs.phys_addr = segment.vaddr

        # Declare the segment's physical memory range in use.
        marked = pools.mark_physical(self.attrs.abs_name(),
                                     self.attrs.phys_addr,
                                     self.attrs.size)

        if self.attrs.phys_addr is not None and not marked:
            raise MergeError, \
                  'Segment "%s": Cannot reserve physical addresses ' \
                  '%#x--%#x.' % \
                  (self.attrs.abs_name(), self.attrs.phys_addr,
                   self.attrs.phys_addr + self.attrs.size - 1)

        # If it's a protected segment, reserve everything in the same SECTION
        if self.attrs.protected:
            base = align_down(segment.vaddr, 1024 * 1024)
            size = align_up(self.attrs.size + base - segment.vaddr,
                            1024 * 1024)
        else:
            base = segment.vaddr
            size = self.attrs.size
        pools.mark_virtual(self.attrs.abs_name(), base, size)
예제 #10
0
파일: core.py 프로젝트: BruceYi/okl4
    def _prepare_segments(self, ofs, sh_string_table, all_sections):
        """Prepare the segments in the file for writing."""

        ph_class = ELF_PH_CLASSES[self.wordsize]
        ph_header_size = ph_class.size() * len(self.segments)
        ofs += ph_header_size
        for segment in self.segments:
            #round down
            new_ofs = align_down(ofs, segment.align)
            if segment.align != 0:
                new_ofs += segment.vaddr % segment.align
            # add extra
            if new_ofs <= ofs:
                new_ofs += segment.align

            assert new_ofs >= ofs, "New offset must be greater " \
                   "than the old offset"
            # check + add pagesize
            ofs = new_ofs
            if segment.align != 0:
                assert ofs % segment.align == segment.vaddr % segment.align, \
                       "Must be congruent"

            if segment.type == PT_PHDR:
                segment.prepare(ofs, ph_header_size)
            else:
                segment.prepare(ofs)
                # Now can prepare the sections inside it if it has any
                if segment.has_sections():
                    segment.prepare_sections(all_sections, sh_string_table)
            ofs += segment.get_filesz()

        return ofs
예제 #11
0
파일: image.py 프로젝트: openbox00/oktest
    def __init__(self, segment, segment_index, file_type, attrs, pools):
        ImageObject.__init__(self, attrs)

        self.segment = segment
        self.segment_index = segment_index
        self.file_type = file_type
        self.attrs.size = segment.get_memsz()

        # Set direct addressing, if that's what's wanted.
        if self.attrs.direct:
            self.attrs.phys_addr = segment.vaddr
            self.attrs.virtpool = 'direct'

        # Declare the segment's physical memory range in use.
        marked = pools.mark_physical(self.attrs.abs_name(),
                                     self.attrs.phys_addr, self.attrs.size,
                                     self.attrs.cache_policy)

        if self.attrs.phys_addr is not None and not marked:
            raise MergeError, \
                  'Segment "%s": Cannot reserve physical addresses ' \
                  '%#x--%#x.' % \
                  (self.attrs.abs_name(), self.attrs.phys_addr,
                   self.attrs.phys_addr + self.attrs.size - 1)

        # If it's a protected segment, reserve everything in the same SECTION
        if self.attrs.protected:
            base = align_down(segment.vaddr, 1024 * 1024)
            size = align_up(self.attrs.size + base - segment.vaddr,
                            1024 * 1024)
        else:
            base = segment.vaddr
            size = self.attrs.size
        pools.mark_virtual(self.attrs.abs_name(), base, size,
                           self.attrs.cache_policy)
예제 #12
0
파일: allocator.py 프로젝트: berkus/okl4
    def __simple_alloc(self, freelist, size, alignment, offset):
        """
        Allocate a single block of memory or raise an exception.

        Search for a place in the freelist to allocate the requested
        block of memory.

        Returns a tuple with the following values:

        - before_free - The freelist up to the place where the memory
          was allocated.
        - after_free  - The freelist after the place where the memory
          was allocated
        - alloc_start - The allocated addresses.

        The free lists are not necessarily page aligned.

        Returning the tuple allows the abort and retry semantics of
        group allocation to be implemented.
        """
        before_free = []
        after_free = []
        free_iter = iter(freelist)

        # Search the freelist for a suitable block.
        for (free_start, free_end, mem_type) in free_iter:
            # Calculate the proposed address.
            alloc_start = align_down(free_start, alignment) + offset
            alloc_end = alloc_start + size - 1

            # If alignment adjustments push the block below the
            # start of the free region, bump it up.
            if alloc_start < free_start:
                alloc_start += alignment
                alloc_end += alignment

            # If the range is within free memory, we've found it.
            if alloc_start >= free_start and alloc_end <= free_end:
                # Put the remaining parts of the region back into the
                # correct freelists.
                if free_start < alloc_start - 1:
                    before_free.append((free_start, alloc_start - 1, mem_type))

                if alloc_end + 1 < free_end:
                    after_free.append((alloc_end + 1, free_end, mem_type))

                break
            else:
                # Not useful, so add to the before list.
                before_free.append((free_start, free_end, mem_type))
        else:
            # Abort if nothing suitable was found.
            raise AllocatorException, "Out of memory"

        # Copy any remaining free list records into the after_freelist
        for curr_free in free_iter:
            after_free.append(curr_free)

        return (before_free, after_free, alloc_start, mem_type)
예제 #13
0
파일: pools.py 프로젝트: dafyddcrosby/L4OS
    def prime_windows(self, pool, ranges):
        # Sort ranges to find those that are in the same window.
        ranges.sort(key=lambda x: x[0])

        # Hack: Fails if there is more than one range in a single window.
        holes     = []
        hole_base = None
        window_size = None

        for (base, size) in ranges:
            range_base = align_down(base, self.WINDOW_SIZE)

            if hole_base is None:
                assert len(holes) == 0

                hole_base = range_base
                window_size = max(align_up(size, self.WINDOW_SIZE),
                                  self.WINDOW_SIZE)
                holes.append((base, size))
            elif range_base == hole_base:
                window_size = max(align_up(size, self.WINDOW_SIZE),
                                  self.WINDOW_SIZE)
                holes.append((base, size))
            else:
                assert len(holes) is not 0
                window_size = align_up(size, self.WINDOW_SIZE)

                free_mem = \
                         self.pool.mark_window(hole_base, window_size,
                                               holes)

                # Add the free parts of the window to our freelist.
                for (free_base, free_end, mem_type) in free_mem:
                    self.add_memory(free_base, free_end - free_base +
                                    1, mem_type)

                # Add the window to the list of claimed windows. 
                self.windows.append((hole_base,
                                     hole_base + self.WINDOW_SIZE - 1))

                hole_base = range_base
                window_size = max(align_up(size, self.WINDOW_SIZE),
                                  self.WINDOW_SIZE)
                holes = [(base, size)]

        # Clean up
        if hole_base is not None:
            assert len(holes) is not 0
            free_mem = \
                     pool.mark_window(hole_base, window_size,
                                      holes)

            # Add the free parts of the window to our freelist.
            for (free_base, free_end, mem_type) in free_mem:
                self.add_memory(free_base, free_end - free_base + 1, mem_type)

            # Add the window to the list of claimed windows. 
            self.windows.append((hole_base,
                                 hole_base + self.WINDOW_SIZE - 1))
예제 #14
0
    def __simple_alloc(self, freelist, size, alignment, offset):
        """
        Allocate a single block of memory or raise an exception.

        Search for a place in the freelist to allocate the requested
        block of memory.

        Returns a tuple with the following values:

        - before_free - The freelist up to the place where the memory
          was allocated.
        - after_free  - The freelist after the place where the memory
          was allocated
        - alloc_start - The allocated addresses.

        The free lists are not necessarily page aligned.

        Returning the tuple allows the abort and retry semantics of
        group allocation to be implemented.
        """
        before_free = []
        after_free = []
        free_iter = iter(freelist)

        # Search the freelist for a suitable block.
        for (free_start, free_end, mem_type) in free_iter:
            # Calculate the proposed address.
            alloc_start = align_down(free_start, alignment) + offset
            alloc_end = alloc_start + size - 1

            # If alignment adjustments push the block below the
            # start of the free region, bump it up.
            if alloc_start < free_start:
                alloc_start += alignment
                alloc_end += alignment

            # If the range is within free memory, we've found it.
            if alloc_start >= free_start and alloc_end <= free_end:
                # Put the remaining parts of the region back into the
                # correct freelists.
                if free_start < alloc_start - 1:
                    before_free.append((free_start, alloc_start - 1, mem_type))

                if alloc_end + 1 < free_end:
                    after_free.append((alloc_end + 1, free_end, mem_type))

                break
            else:
                # Not useful, so add to the before list.
                before_free.append((free_start, free_end, mem_type))
        else:
            # Abort if nothing suitable was found.
            raise AllocatorException, "Out of memory"

        # Copy any remaining free list records into the after_freelist
        for curr_free in free_iter:
            after_free.append(curr_free)

        return (before_free, after_free, alloc_start, mem_type)
예제 #15
0
파일: pools.py 프로젝트: saif1413/L4OS
    def prime_windows(self, pool, ranges):
        # Sort ranges to find those that are in the same window.
        ranges.sort(key=lambda x: x[0])

        # Hack: Fails if there is more than one range in a single window.
        holes = []
        hole_base = None
        window_size = None

        for (base, size) in ranges:
            range_base = align_down(base, self.WINDOW_SIZE)

            if hole_base is None:
                assert len(holes) == 0

                hole_base = range_base
                window_size = max(align_up(size, self.WINDOW_SIZE),
                                  self.WINDOW_SIZE)
                holes.append((base, size))
            elif range_base == hole_base:
                window_size = max(align_up(size, self.WINDOW_SIZE),
                                  self.WINDOW_SIZE)
                holes.append((base, size))
            else:
                assert len(holes) is not 0
                window_size = align_up(size, self.WINDOW_SIZE)

                free_mem = \
                         self.pool.mark_window(hole_base, window_size,
                                               holes)

                # Add the free parts of the window to our freelist.
                for (free_base, free_end, mem_type) in free_mem:
                    self.add_memory(free_base, free_end - free_base + 1,
                                    mem_type)

                # Add the window to the list of claimed windows.
                self.windows.append(
                    (hole_base, hole_base + self.WINDOW_SIZE - 1))

                hole_base = range_base
                window_size = max(align_up(size, self.WINDOW_SIZE),
                                  self.WINDOW_SIZE)
                holes = [(base, size)]

        # Clean up
        if hole_base is not None:
            assert len(holes) is not 0
            free_mem = \
                     pool.mark_window(hole_base, window_size,
                                      holes)

            # Add the free parts of the window to our freelist.
            for (free_base, free_end, mem_type) in free_mem:
                self.add_memory(free_base, free_end - free_base + 1, mem_type)

            # Add the window to the list of claimed windows.
            self.windows.append((hole_base, hole_base + self.WINDOW_SIZE - 1))
예제 #16
0
    def mark(self, base, size):
        """
        mark(base, end) -> marked
        
        Remove the given range from the free list.  This is used to
        record were fixed address objects are located.

        Returns whether or not the range was removed from the free list.

        It is *not* an error if the range is wholly outside the
        freelist.
        """

        end = base + size - 1

        if end < base:
            raise AllocatorException, \
                  "Mark end address (0x%x) less than mark base address (0x%x)" \
                  % (end, base)

        if base == end:
            end = end + 1

        # Remove all of the pages containing the region.
        base = align_down(base, self.min_alloc)
        end  = align_up(end, self.min_alloc) - 1

        new_freelist = []
        marked       = False

        for free_start, free_end, mem_type in self.freelist:
            assert free_start % self.min_alloc == 0
            assert (free_end + 1) % self.min_alloc == 0

            if (free_start <= base and base <= free_end) or \
                   (base <= free_start and free_start <= end):
                marked = True

                # Report the allocation to the tracker, if there is
                # one.
                if self.tracker is not None:
                    self.tracker.track_mark(base, end)

                # Insert into the freelist any remaining parts of the
                # free memory region.
                if free_start < base:
                    new_freelist.append((free_start, base - 1, mem_type))

                if end < free_end:
                    new_freelist.append((end + 1, free_end, mem_type))
            else:
                new_freelist.append((free_start, free_end, mem_type))

        self.freelist = new_freelist
                
        return marked
예제 #17
0
파일: core.py 프로젝트: gapry/L4OS
    def _prepare_segments(self, ofs, sh_string_table, wordsize, endianess):
        """Prepare the segments in the file for writing."""

        ph_class = ELF_PH_CLASSES[wordsize]
        ph_header_size = ph_class.size() * len(self.segments)
        ofs += ph_header_size
        segments = []
        all_sections = self.sections[:]
        for segment in self.segments:
            # round down
            new_ofs = align_down(ofs, segment.align)
            if segment.align != 0:
                new_ofs += segment.vaddr % segment.align
            # add extra
            if new_ofs <= ofs:
                new_ofs += segment.align

            assert new_ofs >= ofs, "New offset must be greater " "than the old offset"
            # check + add pagesize
            ofs = new_ofs
            if segment.align != 0:
                assert ofs % segment.align == segment.vaddr % segment.align, "Must be congruent"

            if segment.type == PT_PHDR:
                segment.prepare(ofs, ph_header_size)
            else:
                segment.prepare(ofs)
                # Now can prepare the sections inside it if it has any
                # Layout using offsets if the segment is a
                # scatter-load one, otherwise use virtual addresses.
                # Note: The sections are sorted by virtual address
                # but their segment offset is used.  This is
                # probably safe.
                if segment.has_sections():
                    sections = []
                    for section in segment.sections:
                        if section not in all_sections:
                            section = section.prepared_to
                        else:
                            name_offset = sh_string_table.add_string(section.name)
                            sh_index = all_sections.index(section)
                            if segment.is_scatter_load():
                                if section.get_in_segment_offset() is None:
                                    section.set_in_segment_offset(section.address - segment.vaddr)
                                offset = ofs + section.calc_in_segment_offset(segment)
                            else:
                                offset = ofs + (section.address - segment.vaddr)

                            section = section.prepare(offset, sh_index, name_offset, wordsize, endianess)
                            all_sections[sh_index] = section

                        sections.append(section)
                    segment.sections = sections
            segments.append(segment)
            ofs += segment.get_filesz()
        return ofs, segments, all_sections
예제 #18
0
    def create_mapping(self, attrs, remaining_size, page_size, is_minimum):
        """
        Map as many pages for the specified page size.
        Return the mapping n-tuple and the size of the mapping.
        If page size is the minimum page size, we need to worry about
        some extra checks.
        """

        # If minimum page size, we need to consider some extra conditions
        if is_minimum:
            phys_addr = align_down(_0(attrs.phys_addr), page_size)
            virt_addr = align_down(_0(attrs.virt_addr), page_size)

            # Calculate the shift cause by aligning the phys_addr
            alignment_diff = 0
            if attrs.phys_addr is not None:
                alignment_diff = attrs.phys_addr - phys_addr

            size = 0
            num_pages = 0
            if attrs.size != None:
                # In certain cases, phys alignments can leave us a
                # page short. To account for this we add alignment
                # differences to the size.
                size = align_up(remaining_size + alignment_diff, page_size)
                num_pages = size / page_size

        # for all other pages, we map as many as we can
        else:
            phys_addr = _0(attrs.phys_addr)
            virt_addr = _0(attrs.virt_addr)
            size = 0

            if attrs.size != None:
                num_pages = remaining_size / page_size
                size = num_pages * page_size

        #print "ceating mapping: size %x, pages %x" % (size, num_pages)
        mapping = (virt_addr, phys_addr, page_size, num_pages, attrs.attach,
                   attrs.cache_policy)
        return mapping, size
예제 #19
0
파일: kernel_nano.py 프로젝트: BruceYi/okl4
    def create_mapping(self, attrs, remaining_size, page_size, is_minimum):
        """
        Map as many pages for the specified page size.
        Return the mapping n-tuple and the size of the mapping.
        If page size is the minimum page size, we need to worry about
        some extra checks.
        """

        # If minimum page size, we need to consider some extra conditions
        if is_minimum:
            phys_addr = align_down(_0(attrs.phys_addr), page_size)
            virt_addr = align_down(_0(attrs.virt_addr), page_size)

            # Calculate the shift cause by aligning the phys_addr
            alignment_diff = 0
            if attrs.phys_addr is not None:
                alignment_diff = attrs.phys_addr - phys_addr

            size = 0
            num_pages = 0
            if attrs.size != None:
                # In certain cases, phys alignments can leave us a
                # page short. To account for this we add alignment
                # differences to the size.
                size = align_up(remaining_size + alignment_diff, page_size)
                num_pages = size / page_size

        # for all other pages, we map as many as we can
        else:
            phys_addr = _0(attrs.phys_addr)
            virt_addr = _0(attrs.virt_addr)
            size = 0

            if attrs.size != None:
                num_pages = remaining_size / page_size
                size = num_pages * page_size

        #print "ceating mapping: size %x, pages %x" % (size, num_pages)
        mapping = (virt_addr, phys_addr, page_size, num_pages,
                   attrs.attach, attrs.cache_policy)
        return mapping, size
예제 #20
0
파일: allocator.py 프로젝트: berkus/okl4
                    # tracked, but that is:
                    # a) really hard.
                    # b) not what the original version did.
                    if self.tracker is not None and addr != item.get_addr():
                        self.tracker.track_alloc(item.get_name(), addr, addr + item.get_size() - 1)
                    item.set_addr(addr)

        # Restore the invariant by removing all partial pages from the
        # freelist.
        self.freelist = []
        for (base, end, mem_type) in new_freelist:
            if base % self.min_alloc != 0:
                base = align_up(base, self.min_alloc)

            if ((end + 1) % self.min_alloc) != 0:
                end = align_down(end, self.min_alloc) - 1

            # Don't include pages that have been rounded out of
            # existence.
            if base < end:
                assert mem_type is not None
                self.freelist.append((base, end, mem_type))

    def next_avail(self):
        """
        Return the base address of the biggest block of memory in
        the free list.
        """

        if len(self.freelist) == 0:
            raise AllocatorException, "next_avail(): Free list empty."
예제 #21
0
    def _prepare_segments(self, ofs, sh_string_table, wordsize, endianess):
        """Prepare the segments in the file for writing."""

        ph_class = ELF_PH_CLASSES[wordsize]
        ph_header_size = ph_class.size() * len(self.segments)
        ofs += ph_header_size
        segments = []
        all_sections = self.sections[:]
        for segment in self.segments:
            #round down
            new_ofs = align_down(ofs, segment.align)
            if segment.align != 0:
                new_ofs += segment.vaddr % segment.align
            # add extra
            if new_ofs <= ofs:
                new_ofs += segment.align

            assert new_ofs >= ofs, "New offset must be greater " \
                   "than the old offset"
            # check + add pagesize
            ofs = new_ofs
            if segment.align != 0:
                assert ofs % segment.align == segment.vaddr % segment.align, \
                       "Must be congruent"

            if segment.type == PT_PHDR:
                segment.prepare(ofs, ph_header_size)
            else:
                segment.prepare(ofs)
                # Now can prepare the sections inside it if it has any
                # Layout using offsets if the segment is a
                # scatter-load one, otherwise use virtual addresses.
                # Note: The sections are sorted by virtual address
                # but their segment offset is used.  This is
                # probably safe.
                if segment.has_sections():
                    sections = []
                    for section in segment.sections:
                        if section not in all_sections:
                            section = section.prepared_to
                        else:
                            name_offset = sh_string_table.add_string(
                                section.name)
                            sh_index = all_sections.index(section)
                            if segment.is_scatter_load():
                                if section.get_in_segment_offset() is None:
                                    section.set_in_segment_offset(
                                        section.address - segment.vaddr)
                                offset = ofs + section.calc_in_segment_offset(
                                    segment)
                            else:
                                offset = ofs + (section.address -
                                                segment.vaddr)

                            section = section.prepare(offset, sh_index,
                                                      name_offset, wordsize,
                                                      endianess)
                            all_sections[sh_index] = section

                        sections.append(section)
                    segment.sections = sections
            segments.append(segment)
            ofs += segment.get_filesz()
        return ofs, segments, all_sections
예제 #22
0
파일: allocator.py 프로젝트: berkus/okl4
    def mark(self, base, size, cache_policy):
        """
        mark(base, end) -> marked

        Remove the given range from the free list.  This is used to
        record were fixed address objects are located.

        Returns whether or not the range was removed from the free list.

        It is *not* an error if the range is wholly outside the
        freelist.
        """

        end = base + size - 1

        if end < base:
            raise AllocatorException, "Mark end address (0x%x) less than mark base address (0x%x)" % (end, base)

        if base == end:
            end = end + 1

        # Remove all of the pages containing the region.
        base = align_down(base, self.min_alloc)
        end = align_up(end, self.min_alloc) - 1

        new_freelist = []
        marked = False

        for free_start, free_end, mem_type in self.freelist:
            assert free_start % self.min_alloc == 0
            assert (free_end + 1) % self.min_alloc == 0

            if (free_start <= base <= free_end) or (base <= free_start <= end):
                marked = True

                if (
                    self.tracker is None or not self.tracker.marking_direct
                ) and not self.machine.check_cache_permissions(cache_policy, mem_type):
                    raise AllocatorException(
                        'Mark: Cache policy "%s" is not'
                        ' allowed by the cache rights "%s"'
                        % (self.machine.cache_policy_to_str(cache_policy), self.machine.cache_perms_to_str(mem_type))
                    )

                # Report the allocation to the tracker, if there is
                # one.
                if self.tracker is not None:
                    self.tracker.track_mark(base, end)

                # Insert into the freelist any remaining parts of the
                # free memory region.
                if free_start < base:
                    new_freelist.append((free_start, base - 1, mem_type))

                if end < free_end:
                    new_freelist.append((end + 1, free_end, mem_type))
            else:
                new_freelist.append((free_start, free_end, mem_type))

        self.freelist = new_freelist

        return marked
예제 #23
0
    def create_ops(self, kernel, image, machine):
        """ Create in init script for Micro kernel initialisation. """

        op_list = []
        offset = [0]

        def add_op(op_func, *args):
            op = op_func(None, None, None, (args), image, machine)
            op_list.append(op)

            my_offset = offset[0]
            offset[0] += op.sizeof()

            return my_offset

        f = StringIO()

        # We just use the cells in order, hopefully the first cell has a
        # large enough heap for soc/kernel.  No longer do sorting
        cells = kernel.cells.values()

        ## PHASE ONE ##
        add_op(InitScriptHeader, [])

        add_op(InitScriptCreateHeap, _0(cells[0].heap_phys_base),
               cells[0].heap_size)

        # Declare total sizes.  The must be a minimum of 1.
        add_op(InitScriptInitIds, max(kernel.total_spaces, 1),
               max(kernel.total_clists, 1), max(kernel.total_mutexes, 1))

        needs_heap = False

        add_op(InitScriptCreateThreadHandles, _0(kernel.thread_array_base),
               kernel.thread_array_count)
        op_list[-1].set_eop()

        ## PHASE TWO ##
        for cell in cells:
            # No need to encode the heap of the first cell.
            if needs_heap:
                add_op(InitScriptCreateHeap, _0(cell.heap_phys_base),
                       cell.heap_size)

            else:
                needs_heap = True

            cell.clist_offset = \
                              add_op(InitScriptCreateClist,
                                     cell.clist_id, cell.max_caps)

            for space in cell.get_static_spaces():
                utcb_base = 0xdeadbeef  # something obvious if we ever use it!
                utcb_size = 0x11

                if space.utcb is not None:
                    utcb_base = space.utcb.virt_addr
                    if utcb_base is None:
                        utcb_base = 0
                        utcb_size = 0
                    else:
                        utcb_size = int(log(space.utcb.size, 2))

                add_op(
                    InitScriptCreateSpace,
                    space.id,
                    space.space_id_base,
                    _0(space.max_spaces),
                    space.clist_id_base,
                    _0(space.max_clists),
                    space.mutex_id_base,
                    _0(space.max_mutexes),
                    space.max_phys_segs,
                    utcb_base,
                    utcb_size,
                    space.is_privileged,
                    #XXX: A space's max priority is currently hardcoded!
                    #XXX: For now, use the kernel's max priority instead.
                    self.MAX_PRIORITY)
                #space.max_priority)

                # Grant the space access to the platform control
                # system call.
                if space.plat_control:
                    add_op(InitScriptAllowPlatformControl, [])

                # Assign any irqs to the space.
                for irq in space.irqs:
                    add_op(InitScriptAssignIrq, irq)

                for thread in space.get_static_threads():
                    # FIXME: Need to deal with entry and user_start
                    thread.offset = \
                                  add_op(InitScriptCreateThread,
                                         thread.cap_slot,
                                         thread.priority,
                                         thread.entry, thread.get_sp(),
                                         utcb_base, cell.get_mr1())

                for mutex in space.get_static_mutexes():
                    mutex.offset = \
                                 add_op(InitScriptCreateMutex, mutex.id)

                for (num, name, attrs) in space.mappings:
                    map_pg_sz = machine.min_page_size()
                    map_pg_sz_log2 = int(log(map_pg_sz, 2))

                    phys_addr = align_down(_0(attrs.phys_addr), map_pg_sz)
                    virt_addr = align_down(_0(attrs.virt_addr), map_pg_sz)

                    # Calculate the shift cause by aligning the phys_addr
                    alignment_diff = 0

                    if attrs.has_phys_addr():
                        alignment_diff = attrs.phys_addr - phys_addr

                    size = 0
                    num_pages = 0
                    if attrs.size != None:
                        # In certain cases, phys alignments can leave us a
                        # page short. To account for this we add alignment
                        # differences to the size.
                        size = align_up(attrs.size + alignment_diff, map_pg_sz)
                        num_pages = size / map_pg_sz

                    # Attributes are 0xff => All cache policies are valid!
                    if attrs.has_phys_addr():
                        add_op(InitScriptCreateSegment, num, phys_addr, 0xff,
                               size, attrs.attach)

                    if attrs.need_mapping():
                        add_op(InitScriptMapMemory, num, 0, attrs.attach,
                               map_pg_sz_log2, num_pages, attrs.cache_policy,
                               virt_addr)

        # Dump any caps
        for cell in cells:
            for space in cell.get_static_spaces():
                for cap in space.ipc_caps:
                    add_op(InitScriptCreateIpcCap, _0(cap.clist.clist_offset),
                           _0(cap.cap_slot), cap.obj.offset)

                for cap in space.mutex_caps:
                    add_op(InitScriptCreateMutexCap,
                           _0(cap.clist.clist_offset), _0(cap.cap_slot),
                           cap.obj.offset)

        op_list[-1].set_eop()

        f.write(''.join([op.encode() for op in op_list]))
        return f
예제 #24
0
파일: util.py 프로젝트: dafyddcrosby/L4OS
    def alloc(self, size, alignment, virt):
        """
        alloc(size, alignment, virt) -> long

        Allocate a block of memory from the freelist and return the
        start address.

        size - The minimum size of the block in bytes.
        alignment - The virtual-physical alignment.
        virt - The virtual address where the data in the block will be
        stored.
        """
        if alignment < self.min_alloc:
            raise AllocatorException, \
                  "Alignment (0x%x) less than the min page size (0x%x)." \
                  % (alignment, self.min_alloc)

        if alignment % self.min_alloc != 0:
            raise AllocatorException, \
                  "Alignment (0x%x) is not a multiple of min page size (0x%x)." \
                  % (alignment, self.min_alloc)

        offset = virt % alignment
        alloc_start = -1

#        if self is phys_alloc:
#            print "Alloc: size: 0x%x, alignment: 0x%x" % (size, alignment)

        for (free_start, free_end) in self.freelist:
            alloc_start = align_down(free_start, alignment) + offset
            alloc_end   = alloc_start + size - 1

#            print "alloc_start: 0x%x, free_start: 0x%x, alloc_end: 0x%x, free_end: 0x%x" % (alloc_start, free_start, alloc_end, free_end)
            # If alignment pushes the block below the start of
            # the free region, bump it up
            if alloc_start < free_start:
                alloc_start += alignment
                alloc_end += alignment

#            print "alloc_start2: 0x%x, free_start2: 0x%x, alloc_end2: 0x%x, free_end2: 0x%x" % (alloc_start, free_start, alloc_end, free_end)
            # If the range is within free memory...
            if alloc_start >= free_start and alloc_end <= free_end:
                index = self.freelist.index((free_start, free_end))
                self.freelist.remove((free_start, free_end))

                # need to divide free range into zero, one or two
                # new ranges
                if free_start < alloc_start:
                    self.freelist.insert(index, (free_start,
                                                 align_down(alloc_start,
                                                            alignment) - 1))
                    index += 1

                if alloc_end <= free_end:
                    self.freelist.insert(index, (alloc_end, free_end))
                else:
                    alloc_start += alignment

                break
            else:
                alloc_start = -1

        if alloc_start == -1:
            raise AllocatorException, "Out of Memory"

#        if self is phys_alloc:
#            print " -free:", [(hex(x), hex(y)) for (x, y) in self.freelist]

        return alloc_start
예제 #25
0
파일: util.py 프로젝트: openbox00/oktest
    def alloc(self, size, alignment, virt):
        """
        alloc(size, alignment, virt) -> long

        Allocate a block of memory from the freelist and return the
        start address.

        size - The minimum size of the block in bytes.
        alignment - The virtual-physical alignment.
        virt - The virtual address where the data in the block will be
        stored.
        """
        if alignment < self.min_alloc:
            raise AllocatorException, \
                  "Alignment (0x%x) less than the min page size (0x%x)." \
                  % (alignment, self.min_alloc)

        if alignment % self.min_alloc != 0:
            raise AllocatorException, \
                  "Alignment (0x%x) is not a multiple of min page size (0x%x)." \
                  % (alignment, self.min_alloc)

        offset = virt % alignment
        alloc_start = -1

#        if self is phys_alloc:
#            print "Alloc: size: 0x%x, alignment: 0x%x" % (size, alignment)

        for (free_start, free_end) in self.freelist:
            alloc_start = align_down(free_start, alignment) + offset
            alloc_end   = alloc_start + size - 1

#            print "alloc_start: 0x%x, free_start: 0x%x, alloc_end: 0x%x, free_end: 0x%x" % (alloc_start, free_start, alloc_end, free_end)
            # If alignment pushes the block below the start of
            # the free region, bump it up
            if alloc_start < free_start:
                alloc_start += alignment
                alloc_end += alignment

#            print "alloc_start2: 0x%x, free_start2: 0x%x, alloc_end2: 0x%x, free_end2: 0x%x" % (alloc_start, free_start, alloc_end, free_end)
            # If the range is within free memory...
            if alloc_start >= free_start and alloc_end <= free_end:
                index = self.freelist.index((free_start, free_end))
                self.freelist.remove((free_start, free_end))

                # need to divide free range into zero, one or two
                # new ranges
                if free_start < alloc_start:
                    self.freelist.insert(index, (free_start,
                                                 align_down(alloc_start,
                                                            alignment) - 1))
                    index += 1

                if alloc_end <= free_end:
                    self.freelist.insert(index, (alloc_end, free_end))
                else:
                    alloc_start += alignment

                break
            else:
                alloc_start = -1

        if alloc_start == -1:
            raise AllocatorException, "Out of Memory"

#        if self is phys_alloc:
#            print " -free:", [(hex(x), hex(y)) for (x, y) in self.freelist]

        return alloc_start
예제 #26
0
    def mark_window(self, window_base, size, holes):
        """
        Mark a window of memory.

        A window is region of memory whose addresses must be either in
        the free list or listed in the holes list.  Every address in
        the region must have been present in the freelist at some
        stage.

        The holes variable is a list of (base, size) tuples.

        Returns the parts of the freelist that were removed.
        """
        if holes is None:
            holes = []

        window_end = window_base + size - 1

        if window_end < window_base:
            raise AllocatorException, \
                  "alloc_window: Window end address (0x%x) less " \
                  "than mark base address (0x%x)" % \
                  (window_end, window_base)

        if window_base == window_end:
            window_end = window_end + 1

        window_base = align_down(window_base, self.min_alloc)
        window_end  = align_up(window_end, self.min_alloc) - 1

        # First check that the proposed window is in the memory that
        # was originally passed to add_memory().
        contained      = False

        for full_start, full_end, mem_type in self.fulllist:
            # If the window is fully contained within one record, then
            # we're sweet.
            if full_start <= window_base <= full_end and \
               full_start <= window_end <=  full_end:
                contained = True
                break

        # OK, what's the answer?
        if not contained:
            raise AllocatorException, \
                  "alloc_window: Window not in allocator controlled memory." 

        # Transform the hole list from (base, size) to (base, end),
        # rounded to page boundaries, and sort in increasing order of
        # address.
        holes = [(align_down(hole_base, self.min_alloc),
                  align_up(hole_base + hole_size - 1, self.min_alloc) - 1)
                 for (hole_base, hole_size) in holes]
        holes.sort(key=lambda x: x[0])

        # Holes must be in the range of the window and can't overlap.
        for hole_base, hole_end in holes:
            assert window_base <= hole_base <= window_end and \
                   window_base <= hole_end <= window_end

        free_iter  = iter(self.freelist)
        hole_iter  = iter(holes)
        curr_addr  = window_base
        free_done  = False
        holes_done = False
        curr_free = None
        curr_hole = None
        new_freelist = []
        removed_freelist = []

        while curr_addr <= window_end:
            assert curr_addr % self.min_alloc == 0

            if not free_done and curr_free is None:
                try:
                    curr_free = free_iter.next()

                    # If the freelist range is outside where we are
                    # working, then loop and get another one.
                    if curr_free[1] < curr_addr or \
                       curr_free[0] > window_end:
                        new_freelist.append(curr_free)
                        curr_free = None
                        continue
                except StopIteration:
                    free_done = True
                    curr_free = None

            if not holes_done and curr_hole is None:
                try:
                    curr_hole = hole_iter.next()
                except StopIteration:
                    holes_done = True
                    curr_hole = None

            if curr_free is not None and \
                   curr_free[0] <= curr_addr and \
                   curr_free[1] >= curr_addr:
                if curr_hole is not None and \
                       curr_hole[0] <= curr_free[1]:
                    raise AllocatorException, \
                          "alloc_window: Hole (0x%x-0x%x) overlaps " \
                          "with free block (0x%x-0x%x)." % \
                          (curr_hole[0], curr_hole[1], curr_free[0],
                           curr_free[1])
                else:
                    # Remove the part we're interested in from the
                    # freelist.  Add the excess.
                    if curr_free[0] < curr_addr:
                        new_freelist.append((curr_free[0], curr_addr -
                                             1, curr_free[2]))

                    if curr_free[1] > window_end:
                        new_freelist.append((window_end + 1,
                                             curr_free[1], curr_free[2]))
                        removed_freelist.append((curr_addr,
                                                 window_end, curr_free[2]))
                    else:
                        removed_freelist.append((curr_addr,
                                                 curr_free[1], curr_free[2]))

                    curr_addr = curr_free[1] + 1
                    curr_free = None
            elif curr_hole is not None and \
                     curr_hole[0] == curr_addr:
                if curr_free is not None and \
                       curr_free[0] <= curr_hole[1]:
                    raise AllocatorException, \
                          "alloc_window: Hole (0x%x-0x%x) overlaps " \
                          "with free block (0x%x-0x%x)." % \
                          (curr_hole[0], curr_hole[1], curr_free[0],
                          curr_free[1])
                else:
                    curr_addr = curr_hole[1] + 1
                    curr_hole = None
            else:
                raise AllocatorException, \
                      "Address %#x should be in a zone but is neither " \
                      "free or in an already allocated block.  Is it part " \
                      "of a direct addressing pool?" % \
                      curr_addr 

        # Copy any remaining free list records into the new freelist.
        for curr_free in free_iter:
            new_freelist.append(curr_free)

        self.freelist = new_freelist

        return removed_freelist
예제 #27
0
class Allocator(object):
    """
    A memory allocator.

    This allocator is based on the first fit algorithm with an
    interface tuned to the rather strange requirements of elfweaver.

    The allocator keeps a sorted list of free address ranges.  Each
    range is a multiple of <min_alloc_size> bytes (aka a page), and is
    aligned on a <min_alloc_size> boundary.

    Separate calls to the allocator will result in items being
    allocated in different pages.  However it is possible to allocate
    items on adjacent bytes, provided that that are part of the same
    allocation group.

    Allocation groups are a method of allocating multiple items at one
    time and ensuring that they are placed sufficiently close to one
    another.  Some items in a group may already have their addresses
    set (for instance, allocating a stack near a program's text
    segment).  These items must have addresses that are not in the
    allocator's free list.

    An individual item will be placed at the lowest address that
    satify its size, offset and alignment requirements.  Items in a
    group are allocated in increasing order of address.

    Memory at a particular address can be removed from the free list
    with the mark() method.  It is not an error to mark memory that is
    wholly or in part missing from the free list.

    A window of memory can also be marked with the mark_window()
    method.  A window is similar to regular marking, except that it is
    an error for the region of memory to contain memory outside of the
    freelist unless those regions are present in a list supplied to
    the method.  The entire memory region must have once been present
    in the allocator's freelist.  Windows are used to implement
    zones.

    """

    def __init__(self, min_alloc_size, tracker = None):
        """
        __init__(min_alloc_size)

        min_alloc_size is the smallest size, in bytes, that can be
        allocated.  Alignment must be a multiple of this size.
        """

        # Alloc size must be a power of 2.
        assert (min_alloc_size & (min_alloc_size - 1)) == 0

        self.freelist  = []
        self.fulllist  = []
        self.min_alloc = min_alloc_size
        self.tracker   = tracker

    def __merge(self, the_list):
        """
        Merge adjacent regions into one.

        Merging regions simplifies the logic of the rest of the
        allocation code.
        """
        last     = None
        new_list = []

        for region in the_list:
            if last is None:
                last = region
            else:
                if last[1] == region[0] - 1:
                    last = (last[0], region[1], last[2])
                else:
                    new_list.append(last)
                    last = region

        if last is not None:
            new_list.append(last)

        return new_list
        
    def sort(self):
        """
        Sort the free and full memory lists and merge any adjacent
        memory regions.
        """
        self.freelist.sort(key=lambda x: x[0])
        self.freelist = self.__merge(self.freelist)

        self.fulllist.sort(key=lambda x: x[0])
        self.fulllist = self.__merge(self.fulllist)


    def get_freelist(self):
        """Return the current free list."""
        return self.freelist


    def add_memory(self, base, size, mem_type):
        """
        Add a region of free memory to the pool.

        The memory must be ia multiple of <min_alloc_size> bytes in
        size, and aligned on a <min_alloc_size> boundary.

        Memory addresses may only be added to the allocator once. 
        """
        # Check that the memory is page aligned.
        assert align_down(base, self.min_alloc) == base
        assert size % self.min_alloc == 0

        end = base + size - 1

        # Check that the memory does not overlap any of the regions
        # already in use.
        for list_base, list_end, list_mem_type in self.fulllist:
            if (base >= list_base and base <= list_end) or \
               (end >= list_base and end <= list_end):
                raise AllocatorException, \
                      "Cannot add overlapping memory regions to the " \
                      "Allocator.  Address (0x%x--0x%x) already in " \
                      "(0x%x--0x%x)" % \
                      (base, end, list_base, list_end)

        self.fulllist.append((base, end, mem_type))
        self.freelist.append((base, end, mem_type))
        self.sort()


    def mark(self, base, size):
        """
        mark(base, end) -> marked
        
        Remove the given range from the free list.  This is used to
        record were fixed address objects are located.

        Returns whether or not the range was removed from the free list.

        It is *not* an error if the range is wholly outside the
        freelist.
        """

        end = base + size - 1

        if end < base:
            raise AllocatorException, \
                  "Mark end address (0x%x) less than mark base address (0x%x)" \
                  % (end, base)

        if base == end:
            end = end + 1

        # Remove all of the pages containing the region.
        base = align_down(base, self.min_alloc)
        end  = align_up(end, self.min_alloc) - 1

        new_freelist = []
        marked       = False

        for free_start, free_end, mem_type in self.freelist:
            assert free_start % self.min_alloc == 0
            assert (free_end + 1) % self.min_alloc == 0

            if (free_start <= base and base <= free_end) or \
                   (base <= free_start and free_start <= end):
                marked = True

                # Report the allocation to the tracker, if there is
                # one.
                if self.tracker is not None:
                    self.tracker.track_mark(base, end)

                # Insert into the freelist any remaining parts of the
                # free memory region.
                if free_start < base:
                    new_freelist.append((free_start, base - 1, mem_type))

                if end < free_end:
                    new_freelist.append((end + 1, free_end, mem_type))
            else:
                new_freelist.append((free_start, free_end, mem_type))

        self.freelist = new_freelist
                
        return marked


    def mark_window(self, window_base, size, holes):
        """
        Mark a window of memory.

        A window is region of memory whose addresses must be either in
        the free list or listed in the holes list.  Every address in
        the region must have been present in the freelist at some
        stage.

        The holes variable is a list of (base, size) tuples.

        Returns the parts of the freelist that were removed.
        """
        if holes is None:
            holes = []

        window_end = window_base + size - 1

        if window_end < window_base:
            raise AllocatorException, \
                  "alloc_window: Window end address (0x%x) less " \
                  "than mark base address (0x%x)" % \
                  (window_end, window_base)

        if window_base == window_end:
            window_end = window_end + 1

        window_base = align_down(window_base, self.min_alloc)
        window_end  = align_up(window_end, self.min_alloc) - 1

        # First check that the proposed window is in the memory that
        # was originally passed to add_memory().
        contained      = False

        for full_start, full_end, mem_type in self.fulllist:
            # If the window is fully contained within one record, then
            # we're sweet.
            if full_start <= window_base <= full_end and \
               full_start <= window_end <=  full_end:
                contained = True
                break

        # OK, what's the answer?
        if not contained:
            raise AllocatorException, \
                  "alloc_window: Window not in allocator controlled memory." 

        # Transform the hole list from (base, size) to (base, end),
        # rounded to page boundaries, and sort in increasing order of
        # address.
        holes = [(align_down(hole_base, self.min_alloc),
                  align_up(hole_base + hole_size - 1, self.min_alloc) - 1)
                 for (hole_base, hole_size) in holes]
        holes.sort(key=lambda x: x[0])

        # Holes must be in the range of the window and can't overlap.
        for hole_base, hole_end in holes:
            assert window_base <= hole_base <= window_end and \
                   window_base <= hole_end <= window_end

        free_iter  = iter(self.freelist)
        hole_iter  = iter(holes)
        curr_addr  = window_base
        free_done  = False
        holes_done = False
        curr_free = None
        curr_hole = None
        new_freelist = []
        removed_freelist = []

        while curr_addr <= window_end:
            assert curr_addr % self.min_alloc == 0

            if not free_done and curr_free is None:
                try:
                    curr_free = free_iter.next()

                    # If the freelist range is outside where we are
                    # working, then loop and get another one.
                    if curr_free[1] < curr_addr or \
                       curr_free[0] > window_end:
                        new_freelist.append(curr_free)
                        curr_free = None
                        continue
                except StopIteration:
                    free_done = True
                    curr_free = None

            if not holes_done and curr_hole is None:
                try:
                    curr_hole = hole_iter.next()
                except StopIteration:
                    holes_done = True
                    curr_hole = None

            if curr_free is not None and \
                   curr_free[0] <= curr_addr and \
                   curr_free[1] >= curr_addr:
                if curr_hole is not None and \
                       curr_hole[0] <= curr_free[1]:
                    raise AllocatorException, \
                          "alloc_window: Hole (0x%x-0x%x) overlaps " \
                          "with free block (0x%x-0x%x)." % \
                          (curr_hole[0], curr_hole[1], curr_free[0],
                           curr_free[1])
                else:
                    # Remove the part we're interested in from the
                    # freelist.  Add the excess.
                    if curr_free[0] < curr_addr:
                        new_freelist.append((curr_free[0], curr_addr -
                                             1, curr_free[2]))

                    if curr_free[1] > window_end:
                        new_freelist.append((window_end + 1,
                                             curr_free[1], curr_free[2]))
                        removed_freelist.append((curr_addr,
                                                 window_end, curr_free[2]))
                    else:
                        removed_freelist.append((curr_addr,
                                                 curr_free[1], curr_free[2]))

                    curr_addr = curr_free[1] + 1
                    curr_free = None
            elif curr_hole is not None and \
                     curr_hole[0] == curr_addr:
                if curr_free is not None and \
                       curr_free[0] <= curr_hole[1]:
                    raise AllocatorException, \
                          "alloc_window: Hole (0x%x-0x%x) overlaps " \
                          "with free block (0x%x-0x%x)." % \
                          (curr_hole[0], curr_hole[1], curr_free[0],
                          curr_free[1])
                else:
                    curr_addr = curr_hole[1] + 1
                    curr_hole = None
            else:
                raise AllocatorException, \
                      "Address %#x should be in a zone but is neither " \
                      "free or in an already allocated block.  Is it part " \
                      "of a direct addressing pool?" % \
                      curr_addr 

        # Copy any remaining free list records into the new freelist.
        for curr_free in free_iter:
            new_freelist.append(curr_free)

        self.freelist = new_freelist

        return removed_freelist

    def __simple_alloc(self, freelist, size, alignment, offset):
        """
        Allocate a single block of memory or raise an exception.

        Search for a place in the freelist to allocate the requested
        block of memory.

        Returns a tuple with the following values:

        - before_free - The freelist up to the place where the memory
          was allocated.
        - after_free  - The freelist after the place where the memory
          was allocated
        - addr        - The allocated addresses.

        The free lists are not necessarily page aligned.

        Returning the tuple allows the abort and retry semantics of
        group allocation to be implemented.
        """
        before_free = []
        after_free  = []
        addr        = None
        free_iter   = iter(freelist)

        # Search the freelist for a suitable block.
        for (free_start, free_end, mem_type) in free_iter:
            # Calculate the proposed address.
            alloc_start = align_down(free_start, alignment) + offset
            alloc_end   = alloc_start + size - 1

            # If alignment adjustments push the block below the
            # start of the free region, bump it up.
            if alloc_start < free_start:
                alloc_start += alignment
                alloc_end += alignment

            # If the range is within free memory, we've found it.
            if alloc_start >= free_start and alloc_end <= free_end:
                # Put the remaining parts of the region back into the
                # correct freelists.
                if free_start < alloc_start - 1:
                    before_free.append((free_start, alloc_start - 1, mem_type))

                if alloc_end + 1 < free_end:
                    after_free.append((alloc_end + 1, free_end, mem_type))

                addr = alloc_start
                break
            else:
                # Not useful, so add to the before list.
                before_free.append((free_start, free_end, mem_type))

        # Abort if nothing suitable was found.
        if addr is None:
            raise AllocatorException, "Out of memory"

        # Copy any remaining free list records into the after_freelist
        for curr_free in free_iter:
            after_free.append(curr_free)

        return (before_free, after_free, alloc_start)

    def __group_alloc(self, group, freelist):
        """
        Allocate memory for a group of items and ensure that they have
        been allocated sufficiently close together.

        Items in the group are allocted with increasing addresses.

        Returns a tuple with the following values:

        new_freelist - The revised freelist
        addrs        - A list of the addresses of the items, in item
                       order.
        """
        addrs        = []
        new_freelist = []
        last_item    = None

        for i in group.get_entries():
            # If the address is not fixed, then allocate
            if i.get_addr() is None:
                (before, freelist, addr) = \
                         self.__simple_alloc(freelist, i.get_size(),
                                            i.get_alignment(),
                                            i.get_offset())
                new_freelist.extend(before)
            else:
                addr = i.get_addr()

                # Split the freelist around the fixed address to that
                # the next item will be allocated at a higher
                # addresses.  Problems will arise fixed items
                # are placed in the list unsorted.
                updated_freelist = []
                for (base, end, mem_type) in freelist:
                    if end < addr:
                        new_freelist.append((base, end, mem_type))
                    else:
                        assert base > addr
                        updated_freelist.append((base, end, mem_type))

                # Use the freelist above the fixed item for further
                # allocations.
                freelist = updated_freelist

            # Check the distance between the items and throw if
            # they're too far apart.
            if last_item is not None and group.get_distance() is not None:
                if addr - (addrs[-1] + last_item.get_size()) > \
                       group.get_distance():
                    err_txt = {
                        'last_item' : last_item.get_name(),
                        'this_item' : i.get_name(),
                        'distance'  : group.get_distance()
                        }
                    raise AllocatorGroupException, \
                          group.get_error_message() % err_txt

            addrs.append(addr)
            last_item = i

        # Add remaining parts of the freelist to the final freelist.
        new_freelist.extend(freelist)

        return (new_freelist, addrs)

    def alloc(self, group):
        """
        Allocate memory for a group of items.  Items within the group
        will be allocated no more that group.get_distance() bytes
        appart, otherwise an exception will be raised.  
        """
        new_freelist  = []
        curr_freelist = self.freelist
        addrs         = []
        completed     = False

        # How to allocate a group of items:
        #
        # 1) Try to allocate the group from the bottom of the free
        #    list.  If that works, good!
        # 2) If an AllocatorException is thrown, then an individual
        #    item could not find the memory it needs, so give up now
        #    and throw again.
        # 3) If an AllocatorGroupException is thrown, then the group's
        #    distance requirements could now be fulfilled.  This could
        #    be as a result of freelist fragmentation, so remove the
        #    first item from the freelist and try again.
        while not completed:
            try:
                (ret_freelist, addrs) = self.__group_alloc(group, curr_freelist)
            except AllocatorException:
                raise AllocatorException, group.get_error_message()
            except AllocatorGroupException, agex:
                # Remove the first freelist record and try again.  If
                # there is fragmentation in the freelist, this may
                # work around it.  This exception may be raised again
                # if the group failed for another reason (for
                # instance, the could not be satisfied at all).
                if len(curr_freelist) <= 1:
                    raise AllocatorException, str(agex)
                else:
                    new_freelist.append(curr_freelist.pop(0))
            else:
                # Success!
                completed = True

                # Rebuild the freelist.
                new_freelist.extend(ret_freelist)

                # Assign to each item its address.
                for (item, addr) in zip(group.get_entries(), addrs):
                    # Report the allocation to the tracker, if there
                    # is one.  For completely accurate coverage the
                    # pages that were allocated should really be
                    # tracked, but that is:
                    # a) really hard.
                    # b) not what the original version did.
                    if self.tracker is not None and \
                           addr != item.get_addr():
                        self.tracker.track_alloc(item.get_name(), addr,
                                                 addr + item.get_size() - 1)
                    item.set_addr(addr)

        # Restore the invariant by removing all partial pages from the
        # freelist.
        self.freelist = []
        for (base, end, mem_type) in new_freelist:
            if base % self.min_alloc != 0:
                base = align_up(base, self.min_alloc)

            if ((end + 1) % self.min_alloc) != 0:
                end = align_down(end, self.min_alloc) - 1

            # Don't include pages that have been rounded out of
            # existence.
            if base < end:
                self.freelist.append((base, end, mem_type))
예제 #28
0
    def create_ops(self, kernel, image, machine):
        """ Create in init script for Micro kernel initialisation. """

        op_list = []
        offset = [0]

        def add_op(op_func, *args):
            op = op_func(None, None, None, (args), image, machine)
            op_list.append(op)

            my_offset = offset[0]
            offset[0] += op.sizeof()

            return my_offset

        f = StringIO()

        # We just use the cells in order, hopefully the first cell has a
        # large enough heap for soc/kernel.  No longer do sorting
        cells = kernel.cells.values()

        ## PHASE ONE ##
        add_op(InitScriptHeader, [])

        add_op(InitScriptCreateHeap, _0(cells[0].heap_phys_base), cells[0].heap_size)

        # Declare total sizes.  The must be a minimum of 1.
        add_op(
            InitScriptInitIds, max(kernel.total_spaces, 1), max(kernel.total_clists, 1), max(kernel.total_mutexes, 1)
        )

        needs_heap = False

        add_op(InitScriptCreateThreadHandles, _0(kernel.thread_array_base), kernel.thread_array_count)
        op_list[-1].set_eop()

        ## PHASE TWO ##
        for cell in cells:
            # No need to encode the heap of the first cell.
            if needs_heap:
                add_op(InitScriptCreateHeap, _0(cell.heap_phys_base), cell.heap_size)

            else:
                needs_heap = True

            cell.clist_offset = add_op(InitScriptCreateClist, cell.clist_id, cell.max_caps)

            for space in cell.get_static_spaces():
                utcb_base = 0xDEADBEEF  # something obvious if we ever use it!
                utcb_size = 0x11

                if space.utcb is not None:
                    utcb_base = space.utcb.virt_addr
                    if utcb_base is None:
                        utcb_base = 0
                        utcb_size = 0
                    else:
                        utcb_size = int(log(space.utcb.size, 2))

                add_op(
                    InitScriptCreateSpace,
                    space.id,
                    space.space_id_base,
                    _0(space.max_spaces),
                    space.clist_id_base,
                    _0(space.max_clists),
                    space.mutex_id_base,
                    _0(space.max_mutexes),
                    space.max_phys_segs,
                    utcb_base,
                    utcb_size,
                    space.is_privileged,
                    # XXX: A space's max priority is currently hardcoded!
                    # XXX: For now, use the kernel's max priority instead.
                    self.MAX_PRIORITY,
                )
                # space.max_priority)

                # Grant the space access to the platform control
                # system call.
                if space.plat_control:
                    add_op(InitScriptAllowPlatformControl, [])

                # Assign any irqs to the space.
                for irq in space.irqs:
                    add_op(InitScriptAssignIrq, irq)

                for thread in space.get_static_threads():
                    # FIXME: Need to deal with entry and user_start
                    thread.offset = add_op(
                        InitScriptCreateThread,
                        thread.cap_slot,
                        thread.priority,
                        thread.entry,
                        thread.get_sp(),
                        utcb_base,
                        cell.get_mr1(),
                    )

                for mutex in space.get_static_mutexes():
                    mutex.offset = add_op(InitScriptCreateMutex, mutex.id)

                for (num, name, attrs) in space.mappings:
                    map_pg_sz = machine.min_page_size()
                    map_pg_sz_log2 = int(log(map_pg_sz, 2))

                    phys_addr = align_down(_0(attrs.phys_addr), map_pg_sz)
                    virt_addr = align_down(_0(attrs.virt_addr), map_pg_sz)

                    # Calculate the shift cause by aligning the phys_addr
                    alignment_diff = 0

                    if attrs.has_phys_addr():
                        alignment_diff = attrs.phys_addr - phys_addr

                    size = 0
                    num_pages = 0
                    if attrs.size != None:
                        # In certain cases, phys alignments can leave us a
                        # page short. To account for this we add alignment
                        # differences to the size.
                        size = align_up(attrs.size + alignment_diff, map_pg_sz)
                        num_pages = size / map_pg_sz

                    # Attributes are 0xff => All cache policies are valid!
                    if attrs.has_phys_addr():
                        add_op(InitScriptCreateSegment, num, phys_addr, 0xFF, size, attrs.attach)

                    if attrs.need_mapping():
                        add_op(
                            InitScriptMapMemory,
                            num,
                            0,
                            attrs.attach,
                            map_pg_sz_log2,
                            num_pages,
                            attrs.cache_policy,
                            virt_addr,
                        )

        # Dump any caps
        for cell in cells:
            for space in cell.get_static_spaces():
                for cap in space.ipc_caps:
                    add_op(InitScriptCreateIpcCap, _0(cap.clist.clist_offset), _0(cap.cap_slot), cap.obj.offset)

                for cap in space.mutex_caps:
                    add_op(InitScriptCreateMutexCap, _0(cap.clist.clist_offset), _0(cap.cap_slot), cap.obj.offset)

        op_list[-1].set_eop()

        f.write("".join([op.encode() for op in op_list]))
        return f
예제 #29
0
                    # b) not what the original version did.
                    if self.tracker is not None and \
                           addr != item.get_addr():
                        self.tracker.track_alloc(item.get_name(), addr,
                                                 addr + item.get_size() - 1)
                    item.set_addr(addr)

        # Restore the invariant by removing all partial pages from the
        # freelist.
        self.freelist = []
        for (base, end, mem_type) in new_freelist:
            if base % self.min_alloc != 0:
                base = align_up(base, self.min_alloc)

            if ((end + 1) % self.min_alloc) != 0:
                end = align_down(end, self.min_alloc) - 1

            # Don't include pages that have been rounded out of
            # existence.
            if base < end:
                assert (mem_type is not None)
                self.freelist.append((base, end, mem_type))

    def next_avail(self):
        """
        Return the base address of the biggest block of memory in
        the free list.
        """

        if len(self.freelist) == 0:
            raise AllocatorException, \