def unflatten(flat_dict: Dict[str, Any]) -> Dict[str, Any]: """ Given a "flattened" dict with compound keys, e.g. {"a.b": 0} unflatten it: {"a": {"b": 0}} """ unflat: Dict[str, Any] = {} for compound_key, value in flat_dict.items(): curr_dict = unflat parts = compound_key.split(".") for key in parts[:-1]: curr_value = curr_dict.get(key) if key not in curr_dict: curr_dict[key] = {} curr_dict = curr_dict[key] elif isinstance(curr_value, dict): curr_dict = curr_value else: raise ConfigurationError("flattened dictionary is invalid") if not isinstance(curr_dict, dict) or parts[-1] in curr_dict: raise ConfigurationError("flattened dictionary is invalid") else: curr_dict[parts[-1]] = value return unflat
def pop_choice(self, key: str, choices: List[Any], default_to_first_choice: bool = False) -> Any: """ Gets the value of ``key`` in the ``params`` dictionary, ensuring that the value is one of the given choices. Note that this `pops` the key from params, modifying the dictionary, consistent with how parameters are processed in this codebase. Parameters ---------- key: str Key to get the value from in the param dictionary choices: List[Any] A list of valid options for values corresponding to ``key``. For example, if you're specifying the type of encoder to use for some part of your model, the choices might be the list of encoder classes we know about and can instantiate. If the value we find in the param dictionary is not in ``choices``, we raise a ``ConfigurationError``, because the user specified an invalid value in their parameter file. default_to_first_choice: bool, optional (default=False) If this is ``True``, we allow the ``key`` to not be present in the parameter dictionary. If the key is not present, we will use the return as the value the first choice in the ``choices`` list. If this is ``False``, we raise a ``ConfigurationError``, because specifying the ``key`` is required (e.g., you `have` to specify your model class when running an experiment, but you can feel free to use default settings for encoders if you want). """ default = choices[0] if default_to_first_choice else self.DEFAULT value = self.pop(key, default) if value not in choices: key_str = self.history + key message = '%s not in acceptable choices for %s: %s' % ( value, key_str, str(choices)) raise ConfigurationError(message) return value
def __init__(self, options_file: str, weight_file: str, num_output_representations: int, requires_grad: bool = False, do_layer_norm: bool = False, dropout: float = 0.5, vocab_to_cache: List[str] = None, keep_sentence_boundaries: bool = False, module: torch.nn.Module = None) -> None: super(Elmo, self).__init__() info("Initializing ELMo") if module is not None: if options_file is not None or weight_file is not None: raise ConfigurationError( "Don't provide options_file or weight_file with module") self._elmo_lstm = module else: self._elmo_lstm = _ElmoBiLm(options_file, weight_file, requires_grad=requires_grad, vocab_to_cache=vocab_to_cache) self._has_cached_vocab = vocab_to_cache is not None self._keep_sentence_boundaries = keep_sentence_boundaries self._dropout = Dropout(p=dropout) self._scalar_mixes: Any = [] for k in range(num_output_representations): scalar_mix = ScalarMix(self._elmo_lstm.num_layers, do_layer_norm=do_layer_norm) self.add_module('scalar_mix_{}'.format(k), scalar_mix) self._scalar_mixes.append(scalar_mix)
def add_subclass_to_registry(subclass: Type[T]): # Add to registry, raise an error if key has already been used. if name in registry: message = "Cannot register %s as %s; name already in use for %s" % ( name, cls.__name__, registry[name].__name__) raise ConfigurationError(message) registry[name] = subclass return subclass
def _check_types(self) -> None: """ Check that all the instances have the same types. """ all_instance_fields_and_types: List[Dict[str, str]] = [{k: v.__class__.__name__ for k, v in x.fields.items()} for x in self.instances] # Check all the field names and Field types are the same for every instance. if not all([all_instance_fields_and_types[0] == x for x in all_instance_fields_and_types]): raise ConfigurationError("You cannot construct a Batch with non-homogeneous Instances.")
def assert_empty(self, class_name: str): """ Raises a ``ConfigurationError`` if ``self.params`` is not empty. We take ``class_name`` as an argument so that the error message gives some idea of where an error happened, if there was one. ``class_name`` should be the name of the `calling` class, the one that got extra parameters (if there are any). """ if self.params: raise ConfigurationError( "Extra parameters passed to {}: {}".format( class_name, self.params))
def tokens_to_indices(self, tokens: List[Token], vocabulary: Vocabulary, index_name: str) -> Dict[str, List[List[int]]]: # pylint: disable=unused-argument texts = [token.text for token in tokens] if any(text is None for text in texts): raise ConfigurationError('ELMoTokenCharactersIndexer needs a tokenizer ' 'that retains text') return {index_name: [ELMoCharacterMapper.convert_word_to_char_ids(text) for text in texts]}
def list_available(cls) -> List[str]: """List default first if it exists""" keys = list(Registrable._registry[cls].keys()) default = cls.default_implementation if default is None: return keys elif default not in keys: message = "Default implementation %s is not registered" % default raise ConfigurationError(message) else: return [default] + [k for k in keys if k != default]
def __init__(self, tokens: List[Token], token_indexers: Dict[str, TokenIndexer]) -> None: self.tokens = tokens self._token_indexers = token_indexers self._indexed_tokens: Optional[Dict[str, TokenList]] = None self._indexer_name_to_indexed_token: Optional[Dict[str, List[str]]] = None if not all([isinstance(x, Token) for x in tokens]): raise ConfigurationError("TextFields must be passed Tokens. " "Found: {} with types {}.".format( tokens, [type(x) for x in tokens]))
def forward( self, tensors: List[torch.Tensor], # pylint: disable=arguments-differ mask: torch.Tensor = None ) -> torch.Tensor: """ Compute a weighted average of the ``tensors``. The input tensors an be any shape with at least two dimensions, but must all be the same shape. When ``do_layer_norm=True``, the ``mask`` is required input. If the ``tensors`` are dimensioned ``(dim_0, ..., dim_{n-1}, dim_n)``, then the ``mask`` is dimensioned ``(dim_0, ..., dim_{n-1})``, as in the typical case with ``tensors`` of shape ``(batch_size, timesteps, dim)`` and ``mask`` of shape ``(batch_size, timesteps)``. When ``do_layer_norm=False`` the ``mask`` is ignored. """ if len(tensors) != self.mixture_size: raise ConfigurationError( "{} tensors were passed, but the module was initialized to " "mix {} tensors.".format(len(tensors), self.mixture_size)) def _do_layer_norm(tensor, broadcast_mask, num_elements_not_masked): tensor_masked = tensor * broadcast_mask mean = torch.sum(tensor_masked) / num_elements_not_masked variance = torch.sum(((tensor_masked - mean) * broadcast_mask)** 2) / num_elements_not_masked return (tensor - mean) / torch.sqrt(variance + 1E-12) normed_weights = torch.nn.functional.softmax(torch.cat( [parameter for parameter in self.scalar_parameters]), dim=0) normed_weights = torch.split(normed_weights, split_size_or_sections=1) if not self.do_layer_norm: pieces = [] for weight, tensor in zip(normed_weights, tensors): pieces.append(weight * tensor) return self.gamma * sum(pieces) else: mask_float = mask.float() broadcast_mask = mask_float.unsqueeze(-1) input_dim = tensors[0].size(-1) num_elements_not_masked = torch.sum(mask_float) * input_dim pieces = [] for weight, tensor in zip(normed_weights, tensors): pieces.append(weight * _do_layer_norm(tensor, broadcast_mask, num_elements_not_masked)) return self.gamma * sum(pieces)
def takes_arg(obj, arg: str) -> bool: """ Checks whether the provided obj takes a certain arg. If it's a class, we're really checking whether its constructor does. If it's a function or method, we're checking the object itself. Otherwise, we raise an error. """ if inspect.isclass(obj): signature = inspect.signature(obj.__init__) elif inspect.ismethod(obj) or inspect.isfunction(obj): signature = inspect.signature(obj) else: raise ConfigurationError(f"object {obj} is not callable") return arg in signature.parameters
def get(self, key: str, default: Any = DEFAULT): """ Performs the functionality associated with dict.get(key) but also checks for returned dicts and returns a Params object in their place with an updated history. """ if default is self.DEFAULT: try: value = self.params.get(key) except KeyError: raise ConfigurationError( "key \"{}\" is required at location \"{}\"".format( key, self.history)) else: value = self.params.get(key, default) return self._check_is_dict(key, value)
def block_orthogonal(tensor: torch.Tensor, split_sizes: List[int], gain: float = 1.0) -> None: """ An initializer which allows initializing model parameters in "blocks". This is helpful in the case of recurrent models which use multiple gates applied to linear projections, which can be computed efficiently if they are concatenated together. However, they are separate parameters which should be initialized independently. Parameters ---------- tensor : ``torch.Tensor``, required. A tensor to initialize. split_sizes : List[int], required. A list of length ``tensor.ndim()`` specifying the size of the blocks along that particular dimension. E.g. ``[10, 20]`` would result in the tensor being split into chunks of size 10 along the first dimension and 20 along the second. gain : float, optional (default = 1.0) The gain (scaling) applied to the orthogonal initialization. """ data = tensor.data sizes = list(tensor.size()) if any([a % b != 0 for a, b in zip(sizes, split_sizes)]): raise ConfigurationError( "tensor dimensions must be divisible by their respective " "split_sizes. Found size: {} and split_sizes: {}".format( sizes, split_sizes)) indexes = [ list(range(0, max_size, split)) for max_size, split in zip(sizes, split_sizes) ] # Iterate over all possible blocks within the tensor. for block_start_indices in itertools.product(*indexes): # A list of tuples containing the index to start at for this block # and the appropriate step size (i.e split_size[i] for dimension i). index_and_step_tuples = zip(block_start_indices, split_sizes) # This is a tuple of slices corresponding to: # tensor[index: index + step_size, ...]. This is # required because we could have an arbitrary number # of dimensions. The actual slices we need are the # start_index: start_index + step for each dimension in the tensor. block_slice = tuple([ slice(start_index, start_index + step) for start_index, step in index_and_step_tuples ]) data[block_slice] = torch.nn.init.orthogonal_( tensor[block_slice].contiguous(), gain=gain)
def __init__(self, options_file: str, weight_file: str, requires_grad: bool = False, vocab_to_cache: List[str] = None) -> None: super(_ElmoBiLm, self).__init__() self._token_embedder = _ElmoCharacterEncoder( options_file, weight_file, requires_grad=requires_grad) self._requires_grad = requires_grad if requires_grad and vocab_to_cache: warn( "You are fine tuning ELMo and caching char CNN word vectors. " "This behaviour is not guaranteed to be well defined, particularly. " "if not all of your inputs will occur in the vocabulary cache." ) # This is an embedding, used to look up cached # word vectors built from character level cnn embeddings. self._word_embedding = None self._bos_embedding: torch.Tensor = None self._eos_embedding: torch.Tensor = None if vocab_to_cache: info("Caching character cnn layers for words in vocabulary.") # This sets 3 attributes, _word_embedding, _bos_embedding and _eos_embedding. # They are set in the method so they can be accessed from outside the # constructor. self.create_cached_cnn_embeddings(vocab_to_cache) with open(cached_path(options_file), 'r') as fin: options = json.load(fin) if not options['lstm'].get('use_skip_connections'): raise ConfigurationError( 'We only support pretrained biLMs with residual connections') self._elmo_lstm = ElmoLstm( input_size=options['lstm']['projection_dim'], hidden_size=options['lstm']['projection_dim'], cell_size=options['lstm']['dim'], num_layers=options['lstm']['n_layers'], memory_cell_clip_value=options['lstm']['cell_clip'], state_projection_clip_value=options['lstm']['proj_clip'], requires_grad=requires_grad) self._elmo_lstm.load_weights(weight_file) # Number of representation layers including context independent layer self.num_layers = options['lstm']['n_layers'] + 1
def _read_embeddings_from_hdf5(embeddings_filename: str, embedding_dim: int, vocab: Vocabulary, namespace: str = "tokens") -> torch.FloatTensor: """ Reads from a hdf5 formatted file. The embedding matrix is assumed to be keyed by 'embedding' and of size ``(num_tokens, embedding_dim)``. """ with h5py.File(embeddings_filename, 'r') as fin: embeddings = fin['embedding'][...] if list(embeddings.shape) != [ vocab.get_vocab_size(namespace), embedding_dim ]: raise ConfigurationError( "Read shape {0} embeddings from the file, but expected {1}".format( list(embeddings.shape), [vocab.get_vocab_size(namespace), embedding_dim])) return torch.FloatTensor(embeddings)
def pop(self, key: str, default: Any = DEFAULT) -> Any: """ Performs the functionality associated with dict.pop(key), along with checking for returned dictionaries, replacing them with Param objects with an updated history. If ``key`` is not present in the dictionary, and no default was specified, we raise a ``ConfigurationError``, instead of the typical ``KeyError``. """ if default is self.DEFAULT: try: value = self.params.pop(key) except KeyError: raise ConfigurationError( "key \"{}\" is required at location \"{}\"".format( key, self.history)) else: value = self.params.pop(key, default) if not isinstance(value, dict): info(self.history + key + " = " + str(value)) # type: ignore return self._check_is_dict(key, value)
def print_statistics(self) -> None: # Make sure if has been indexed first sequence_field_lengths: Dict[str, List] = defaultdict(list) for instance in self.instances: if not instance.indexed: raise ConfigurationError("Instances must be indexed with vocabulary " "before asking to print dataset statistics.") for field, field_padding_lengths in instance.get_padding_lengths().items(): for key, value in field_padding_lengths.items(): sequence_field_lengths[f"{field}.{key}"].append(value) print("\n\n----Dataset Statistics----\n") for name, lengths in sequence_field_lengths.items(): print(f"Statistics for {name}:") print(f"\tLengths: Mean: {numpy.mean(lengths)}, Standard Dev: {numpy.std(lengths)}, " f"Max: {numpy.max(lengths)}, Min: {numpy.min(lengths)}") print("\n10 Random instances: ") for i in list(numpy.random.randint(len(self.instances), size=10)): print(f"Instance {i}:") print(f"\t{self.instances[i]}")
def __init__(self, num_embeddings: int, embedding_dim: int, projection_dim: int = None, weight: torch.FloatTensor = None, padding_index: int = None, trainable: bool = True, max_norm: float = None, norm_type: float = 2., scale_grad_by_freq: bool = False, sparse: bool = False) -> None: super(Embedding, self).__init__() self.num_embeddings = num_embeddings self.padding_index = padding_index self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq self.sparse = sparse self.output_dim = projection_dim or embedding_dim if weight is None: weight = torch.FloatTensor(num_embeddings, embedding_dim) self.weight = torch.nn.Parameter(weight, requires_grad=trainable) torch.nn.init.xavier_uniform_(self.weight) else: if weight.size() != (num_embeddings, embedding_dim): raise ConfigurationError( "A weight matrix was passed with contradictory embedding shapes." ) self.weight = torch.nn.Parameter(weight, requires_grad=trainable) if self.padding_index is not None: self.weight.data[self.padding_index].fill_(0) if projection_dim: self._projection = torch.nn.Linear(embedding_dim, projection_dim) else: self._projection = None
def forward(self, inputs: torch.Tensor) -> Dict[str, torch.Tensor]: # pylint: disable=arguments-differ """ Compute context insensitive token embeddings for ELMo representations. Parameters ---------- inputs: ``torch.Tensor`` Shape ``(batch_size, sequence_length, 50)`` of character ids representing the current batch. Returns ------- Dict with keys: ``'token_embedding'``: ``torch.Tensor`` Shape ``(batch_size, sequence_length + 2, embedding_dim)`` tensor with context insensitive token representations. ``'mask'``: ``torch.Tensor`` Shape ``(batch_size, sequence_length + 2)`` long tensor with sequence mask. """ # Add BOS/EOS mask = ((inputs > 0).long().sum(dim=-1) > 0).long() character_ids_with_bos_eos, mask_with_bos_eos = add_sentence_boundary_token_ids( inputs, mask, self._beginning_of_sentence_characters, self._end_of_sentence_characters) # the character id embedding max_chars_per_token = self._options['char_cnn'][ 'max_characters_per_token'] # (batch_size * sequence_length, max_chars_per_token, embed_dim) character_embedding = torch.nn.functional.embedding( character_ids_with_bos_eos.view(-1, max_chars_per_token), self._char_embedding_weights) # run convolutions cnn_options = self._options['char_cnn'] if cnn_options['activation'] == 'tanh': activation = torch.tanh elif cnn_options['activation'] == 'relu': activation = torch.nn.functional.relu else: raise ConfigurationError("Unknown activation") # (batch_size * sequence_length, embed_dim, max_chars_per_token) character_embedding = torch.transpose(character_embedding, 1, 2) convs = [] for i in range(len(self._convolutions)): conv = getattr(self, 'char_conv_{}'.format(i)) convolved = conv(character_embedding) # (batch_size * sequence_length, n_filters for this width) convolved, _ = torch.max(convolved, dim=-1) convolved = activation(convolved) convs.append(convolved) # (batch_size * sequence_length, n_filters) token_embedding = torch.cat(convs, dim=-1) # apply the highway layers (batch_size * sequence_length, n_filters) token_embedding = self._highways(token_embedding) # final projection (batch_size * sequence_length, embedding_dim) token_embedding = self._projection(token_embedding) # reshape to (batch_size, sequence_length, embedding_dim) batch_size, sequence_length, _ = character_ids_with_bos_eos.size() return { 'mask': mask_with_bos_eos, 'token_embedding': token_embedding.view(batch_size, sequence_length, -1) }
def get_padding_lengths(self) -> Dict[str, int]: """ The ``TextField`` has a list of ``Tokens``, and each ``Token`` gets converted into arrays by (potentially) several ``TokenIndexers``. This method gets the max length (over tokens) associated with each of these arrays. """ # Our basic outline: we will iterate over `TokenIndexers`, and aggregate lengths over tokens # for each indexer separately. Then we will combine the results for each indexer into a single # dictionary, resolving any (unlikely) key conflicts by taking a max. lengths = [] if self._indexed_tokens is None: raise ConfigurationError( "You must call .index(vocabulary) on a " "field before determining padding lengths.") # Each indexer can return a different sequence length, and for indexers that return # multiple arrays each can have a different length. We'll keep track of them here. for indexer_name, indexer in self._token_indexers.items(): indexer_lengths = {} for indexed_tokens_key in self._indexer_name_to_indexed_token[ indexer_name]: # This is a list of dicts, one for each token in the field. token_lengths = [ indexer.get_padding_lengths(token) for token in self._indexed_tokens[indexed_tokens_key] ] if not token_lengths: # This is a padding edge case and occurs when we want to pad a ListField of # TextFields. In order to pad the list field, we need to be able to have an # _empty_ TextField, but if this is the case, token_lengths will be an empty # list, so we add the default empty padding dictionary to the list instead. token_lengths = [{}] # Iterate over the keys and find the maximum token length. # It's fine to iterate over the keys of the first token since all tokens have the same keys. for key in token_lengths[0]: indexer_lengths[key] = max(x[key] if key in x else 0 for x in token_lengths) lengths.append(indexer_lengths) indexer_sequence_lengths = { key: len(val) for key, val in self._indexed_tokens.items() } # Get the padding lengths for sequence lengths. if len(set(indexer_sequence_lengths.values())) == 1: # This is the default case where all indexers return the same length. # Keep the existing 'num_tokens' key for backward compatibility with existing config files. padding_lengths = { 'num_tokens': list(indexer_sequence_lengths.values())[0] } else: # The indexers return different lengths. padding_lengths = indexer_sequence_lengths # Get all keys which have been used for padding for each indexer and take the max if there are duplicates. padding_keys = {key for d in lengths for key in d.keys()} for padding_key in padding_keys: padding_lengths[padding_key] = max( x[padding_key] if padding_key in x else 0 for x in lengths) return padding_lengths
def _read_embeddings_from_text_file( file_uri: str, embedding_dim: int, vocab: Vocabulary, namespace: str = "tokens") -> torch.FloatTensor: """ Read pre-trained word vectors from an eventually compressed text file, possibly contained inside an archive with multiple files. The text file is assumed to be utf-8 encoded with space-separated fields: [word] [dim 1] [dim 2] ... Lines that contain more numerical tokens than ``embedding_dim`` raise a warning and are skipped. The remainder of the docstring is identical to ``_read_pretrained_embeddings_file``. """ tokens_to_keep = set( vocab.get_index_to_token_vocabulary(namespace).values()) vocab_size = vocab.get_vocab_size(namespace) embeddings = {} # First we read the embeddings from the file, only keeping vectors for the words we need. info("Reading pretrained embeddings from file") with EmbeddingsTextFile(file_uri) as embeddings_file: for line in embeddings_file: token = line.split(' ', 1)[0] if token in tokens_to_keep: fields = line.rstrip().split(' ') if len(fields) - 1 != embedding_dim: # Sometimes there are funny unicode parsing problems that lead to different # fields lengths (e.g., a word with a unicode space character that splits # into more than one column). We skip those lines. Note that if you have # some kind of long header, this could result in all of your lines getting # skipped. It's hard to check for that here; you just have to look in the # embedding_misses_file and at the model summary to make sure things look # like they are supposed to. warn( "Found line with wrong number of dimensions (expected: %d; actual: %d): %s", embedding_dim, len(fields) - 1, line) continue vector = numpy.asarray(fields[1:], dtype='float32') embeddings[token] = vector if not embeddings: raise ConfigurationError( "No embeddings of correct dimension found; you probably " "misspecified your embedding_dim parameter, or didn't " "pre-populate your Vocabulary") all_embeddings = numpy.asarray(list(embeddings.values())) embeddings_mean = float(numpy.mean(all_embeddings)) embeddings_std = float(numpy.std(all_embeddings)) # Now we initialize the weight matrix for an embedding layer, starting with random vectors, # then filling in the word vectors we just read. info("Initializing pre-trained embedding layer") embedding_matrix = torch.FloatTensor(vocab_size, embedding_dim).normal_( embeddings_mean, embeddings_std) num_tokens_found = 0 index_to_token = vocab.get_index_to_token_vocabulary(namespace) for i in range(vocab_size): token = index_to_token[i] # If we don't have a pre-trained vector for this word, we'll just leave this row alone, # so the word has a random initialization. if token in embeddings: embedding_matrix[i] = torch.FloatTensor(embeddings[token]) num_tokens_found += 1 else: info( "Token %s was not found in the embedding file. Initialising randomly.", token) info("Pretrained embeddings were found for %d out of %d tokens", num_tokens_found, vocab_size) return embedding_matrix
def _lstm_forward(self, inputs: PackedSequence, initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None) -> \ Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Parameters ---------- inputs : ``PackedSequence``, required. A batch first ``PackedSequence`` to run the stacked LSTM over. initial_state : ``Tuple[torch.Tensor, torch.Tensor]``, optional, (default = None) A tuple (state, memory) representing the initial hidden state and memory of the LSTM, with shape (num_layers, batch_size, 2 * hidden_size) and (num_layers, batch_size, 2 * cell_size) respectively. Returns ------- output_sequence : ``torch.FloatTensor`` The encoded sequence of shape (num_layers, batch_size, sequence_length, hidden_size) final_states: ``Tuple[torch.FloatTensor, torch.FloatTensor]`` The per-layer final (state, memory) states of the LSTM, with shape (num_layers, batch_size, 2 * hidden_size) and (num_layers, batch_size, 2 * cell_size) respectively. The last dimension is duplicated because it contains the state/memory for both the forward and backward layers. """ if initial_state is None: hidden_states: List[Optional[Tuple[torch.Tensor, torch.Tensor]]] = [None] * len( self.forward_layers) elif initial_state[0].size()[0] != len(self.forward_layers): raise ConfigurationError( "Initial states were passed to forward() but the number of " "initial states does not match the number of layers.") else: hidden_states = list( zip(initial_state[0].split(1, 0), initial_state[1].split(1, 0))) inputs, batch_lengths = pad_packed_sequence(inputs, batch_first=True) forward_output_sequence = inputs backward_output_sequence = inputs final_states = [] sequence_outputs = [] for layer_index, state in enumerate(hidden_states): forward_layer = getattr(self, 'forward_layer_{}'.format(layer_index)) backward_layer = getattr(self, 'backward_layer_{}'.format(layer_index)) forward_cache = forward_output_sequence backward_cache = backward_output_sequence if state is not None: forward_hidden_state, backward_hidden_state = state[0].split( self.hidden_size, 2) forward_memory_state, backward_memory_state = state[1].split( self.cell_size, 2) forward_state = (forward_hidden_state, forward_memory_state) backward_state = (backward_hidden_state, backward_memory_state) else: forward_state = None backward_state = None forward_output_sequence, forward_state = forward_layer( forward_output_sequence, batch_lengths, forward_state) backward_output_sequence, backward_state = backward_layer( backward_output_sequence, batch_lengths, backward_state) # Skip connections, just adding the input to the output. if layer_index != 0: forward_output_sequence += forward_cache backward_output_sequence += backward_cache sequence_outputs.append( torch.cat([forward_output_sequence, backward_output_sequence], -1)) # Append the state tuples in a list, so that we can return # the final states for all the layers. final_states.append( (torch.cat([forward_state[0], backward_state[0]], -1), torch.cat([forward_state[1], backward_state[1]], -1))) stacked_sequence_outputs: torch.FloatTensor = torch.stack( sequence_outputs) # Stack the hidden state and memory for each layer into 2 tensors of shape # (num_layers, batch_size, hidden_size) and (num_layers, batch_size, cell_size) # respectively. final_hidden_states, final_memory_states = zip(*final_states) final_state_tuple: Tuple[torch.FloatTensor, torch.FloatTensor] = (torch.cat( final_hidden_states, 0), torch.cat(final_memory_states, 0)) return stacked_sequence_outputs, final_state_tuple
def by_name(cls: Type[T], name: str) -> Type[T]: info(f"instantiating registered subclass {name} of {cls}") if name not in Registrable._registry[cls]: raise ConfigurationError("%s is not a registered name for %s" % (name, cls.__name__)) return Registrable._registry[cls].get(name)
def create_kwargs(cls: Type[T], params: Params, **extras) -> Dict[str, Any]: """ Given some class, a `Params` object, and potentially other keyword arguments, create a dict of keyword args suitable for passing to the class's constructor. The function does this by finding the class's constructor, matching the constructor arguments to entries in the `params` object, and instantiating values for the parameters using the type annotation and possibly a from_params method. Any values that are provided in the `extras` will just be used as is. For instance, you might provide an existing `Vocabulary` this way. """ # Get the signature of the constructor. signature = inspect.signature(cls.__init__) kwargs: Dict[str, Any] = {} # Iterate over all the constructor parameters and their annotations. for name, param in signature.parameters.items(): # Skip "self". You're not *required* to call the first parameter "self", # so in theory this logic is fragile, but if you don't call the self parameter # "self" you kind of deserve what happens. if name == "self": continue # If the annotation is a compound type like typing.Dict[str, int], # it will have an __origin__ field indicating `typing.Dict` # and an __args__ field indicating `(str, int)`. We capture both. annotation = remove_optional(param.annotation) origin = getattr(annotation, '__origin__', None) args = getattr(annotation, '__args__', []) # The parameter is optional if its default value is not the "no default" sentinel. default = param.default optional = default != _NO_DEFAULT # Some constructors expect extra non-parameter items, e.g. vocab: Vocabulary. # We check the provided `extras` for these and just use them if they exist. if name in extras: kwargs[name] = extras[name] # The next case is when the parameter type is itself constructible from_params. elif hasattr(annotation, 'from_params'): if name in params: # Our params have an entry for this, so we use that. subparams = params.pop(name) if takes_arg(annotation.from_params, 'extras'): # If annotation.params accepts **extras, we need to pass them all along. # For example, `BasicTextFieldEmbedder.from_params` requires a Vocabulary # object, but `TextFieldEmbedder.from_params` does not. subextras = extras else: # Otherwise, only supply the ones that are actual args; any additional ones # will cause a TypeError. subextras = { k: v for k, v in extras.items() if takes_arg(annotation.from_params, k) } # In some cases we allow a string instead of a param dict, so # we need to handle that case separately. if isinstance(subparams, str): kwargs[name] = annotation.by_name(subparams)() else: kwargs[name] = annotation.from_params(params=subparams, **subextras) elif not optional: # Not optional and not supplied, that's an error! raise ConfigurationError( f"expected key {name} for {cls.__name__}") else: kwargs[name] = default # If the parameter type is a Python primitive, just pop it off # using the correct casting pop_xyz operation. elif annotation == str: kwargs[name] = (params.pop(name, default) if optional else params.pop(name)) elif annotation == int: kwargs[name] = (params.pop_int(name, default) if optional else params.pop_int(name)) elif annotation == bool: kwargs[name] = (params.pop_bool(name, default) if optional else params.pop_bool(name)) elif annotation == float: kwargs[name] = (params.pop_float(name, default) if optional else params.pop_float(name)) # This is special logic for handling types like Dict[str, TokenIndexer], which it creates by # instantiating each value from_params and returning the resulting dict. elif origin in (Dict, dict) and len(args) == 2 and hasattr( args[-1], 'from_params'): value_cls = annotation.__args__[-1] value_dict = {} for key, value_params in params.pop(name, Params({})).items(): value_dict[key] = value_cls.from_params(params=value_params, **extras) kwargs[name] = value_dict else: # Pass it on as is and hope for the best. ¯\_(ツ)_/¯ if optional: kwargs[name] = params.pop(name, default) else: kwargs[name] = params.pop(name) params.assert_empty(cls.__name__) return kwargs
def from_params( cls, params: Params, instances: Iterable['adi.Instance'] = None): # type: ignore """ there are two possible ways to build a vocabulary; from a collection of instances, using :func:`Vocabulary.from_instances`, or from a pre-saved vocabulary, using :func:`Vocabulary.from_files`. you can also extend pre-saved vocabulary with collection of instances using this method. This method wraps these options, allowing their specification from a ``Params`` object, generated from a JSON configuration file. parameters ---------- params: Params, required. instances: Iterable['adi.Instance'], optional If ``params`` doesn't contain a ``directory_path`` key, the ``Vocabulary`` can be built directly from a collection of instances (i.e. a dataset). If ``extend`` key is set False, dataset instances will be ignored and final vocabulary will be one loaded from ``directory_path``. If ``extend`` key is set True, dataset instances will be used to extend the vocabulary loaded from ``directory_path`` and that will be final vocabulary used. returns ------- a ``Vocabulary``. """ # pylint: disable=arguments-differ # Vocabulary is ``Registrable`` so that you can configure a custom subclass, # but (unlike most of our registrables) almost everyone will want to use the # base implementation. So instead of having an abstract ``VocabularyBase`` or # such, we just add the logic for instantiating a registered subclass here, # so that most users can continue doing what they were doing. vocab_type = params.pop("type", None) if vocab_type is not None: return cls.by_name(vocab_type).from_params(params=params, instances=instances) extend = params.pop("extend", False) vocabulary_directory = params.pop("directory_path", None) if not vocabulary_directory and not instances: raise ConfigurationError( "You must provide either a Params object containing a " "vocab_directory key or a Dataset to build a vocabulary from.") if extend and not instances: raise ConfigurationError( "'extend' is true but there are not instances passed to extend." ) if extend and not vocabulary_directory: raise ConfigurationError( "'extend' is true but there is not 'directory_path' to extend from." ) if vocabulary_directory and instances: if extend: info("Loading Vocab from files and extending it with dataset.") else: info("Loading Vocab from files instead of dataset.") if vocabulary_directory: vocab = Vocabulary.from_files(vocabulary_directory) if not extend: params.assert_empty("Vocabulary - from files") return vocab if extend: vocab.extend_from_instances(params, instances=instances) return vocab min_count = params.pop("min_count", None) max_vocab_size = pop_max_vocab_size(params) non_padded_namespaces = params.pop("non_padded_namespaces", DEFAULT_NON_PADDED_NAMESPACES) pretrained_files = params.pop("pretrained_files", {}) only_include_pretrained_words = params.pop_bool( "only_include_pretrained_words", False) tokens_to_add = params.pop("tokens_to_add", None) params.assert_empty("Vocabulary - from dataset") return Vocabulary.from_instances( instances=instances, min_count=min_count, max_vocab_size=max_vocab_size, non_padded_namespaces=non_padded_namespaces, pretrained_files=pretrained_files, only_include_pretrained_words=only_include_pretrained_words, tokens_to_add=tokens_to_add)
def _extend(self, counter: Dict[str, Dict[str, int]] = None, min_count: Dict[str, int] = None, max_vocab_size: Union[int, Dict[str, int]] = None, non_padded_namespaces: Iterable[ str] = DEFAULT_NON_PADDED_NAMESPACES, pretrained_files: Optional[Dict[str, str]] = None, only_include_pretrained_words: bool = False, tokens_to_add: Dict[str, List[str]] = None) -> None: """ this method can be used for extending already generated vocabulary. it takes same parameters as Vocabulary initializer. The token2index and indextotoken mappings of calling vocabulary will be retained. it is an inplace operation so None will be returned. """ if not isinstance(max_vocab_size, dict): int_max_vocab_size = max_vocab_size max_vocab_size = defaultdict( lambda: int_max_vocab_size) # type: ignore min_count = min_count or {} pretrained_files = pretrained_files or {} non_padded_namespaces = set(non_padded_namespaces) counter = counter or {} tokens_to_add = tokens_to_add or {} self._retained_counter = counter # Make sure vocabulary extension is safe. current_namespaces = {*self._token_to_index} extension_namespaces = {*counter, *tokens_to_add} for namespace in current_namespaces & extension_namespaces: # if new namespace was already present # Either both should be padded or none should be. original_padded = not any( namespace_match(pattern, namespace) for pattern in self._non_padded_namespaces) extension_padded = not any( namespace_match(pattern, namespace) for pattern in non_padded_namespaces) if original_padded != extension_padded: raise ConfigurationError( "Common namespace {} has conflicting ".format(namespace) + "setting of padded = True/False. " + "Hence extension cannot be done.") # Add new non-padded namespaces for extension self._token_to_index.add_non_padded_namespaces(non_padded_namespaces) self._index_to_token.add_non_padded_namespaces(non_padded_namespaces) self._non_padded_namespaces.update(non_padded_namespaces) for namespace in counter: if namespace in pretrained_files: raise NotImplementedError( "Uh oh, I deleted this line and something bad happened : {}" .format( "pretrained_list = _read_pretrained_tokens(pretrained_files[namespace])" )) else: pretrained_list = None token_counts = list(counter[namespace].items()) token_counts.sort(key=lambda x: x[1], reverse=True) try: max_vocab = max_vocab_size[namespace] except KeyError: max_vocab = None if max_vocab: token_counts = token_counts[:max_vocab] for token, count in token_counts: if pretrained_list is not None: if only_include_pretrained_words: if token in pretrained_list and count >= min_count.get( namespace, 1): self.add_token_to_namespace(token, namespace) elif token in pretrained_list or count >= min_count.get( namespace, 1): self.add_token_to_namespace(token, namespace) elif count >= min_count.get(namespace, 1): self.add_token_to_namespace(token, namespace) for namespace, tokens in tokens_to_add.items(): for token in tokens: self.add_token_to_namespace(token, namespace)