def fit_mixture_model(self): ''' Special fitting for this dual recall dataset ''' self.dataset['em_fits'] = dict( kappa=np.empty(self.dataset['probe_angle'].size), mixt_target=np.empty(self.dataset['probe_angle'].size), mixt_nontargets=np.empty(self.dataset['probe_angle'].size), mixt_random=np.empty(self.dataset['probe_angle'].size), resp_target=np.empty(self.dataset['probe_angle'].size), resp_nontarget=np.empty(self.dataset['probe_angle'].size), resp_random=np.empty(self.dataset['probe_angle'].size), train_LL=np.empty(self.dataset['probe_angle'].size), test_LL=np.empty(self.dataset['probe_angle'].size)) for key in self.dataset['em_fits']: self.dataset['em_fits'][key].fill(np.nan) self.dataset['em_fits_angle_nitems_subjects'] = dict() self.dataset['em_fits_angle_nitems'] = dict(mean=dict(), std=dict(), values=dict()) self.dataset['em_fits_colour_nitems_subjects'] = dict() self.dataset['em_fits_colour_nitems'] = dict(mean=dict(), std=dict(), values=dict()) # This dataset is a bit special with regards to subjects, it's a conditional design: # 8 Subjects (1 - 8) only did 6 items, both angle/colour trials # 6 Subjects (9 - 14) did 3 items, both angle/colour trials. # We have 160 trials per (subject, n_item, condition). # Angles trials for n_items_i, n_items in enumerate(self.dataset['n_items_space']): for subject_i, subject in enumerate(self.dataset['subject_space']): ids_filtered = ((self.dataset['subject']==subject) & (self.dataset['n_items'] == n_items) & (self.dataset.get('masked', False) == False)).flatten() ids_filtered = self.dataset['angle_trials'] & ids_filtered if ids_filtered.sum() > 0: print 'Angle trials, %d items, subject %d, %d datapoints' % (n_items, subject, self.dataset['probe_angle'][ids_filtered, 0].size) # params_fit = em_circularmixture.fit(self.dataset['probe_angle'][ids_filtered, 0], self.dataset['item_angle'][ids_filtered, 0], self.dataset['item_angle'][ids_filtered, 1:]) cross_valid_outputs = em_circularmixture.cross_validation_kfold(self.dataset['probe_angle'][ids_filtered, 0], self.dataset['item_angle'][ids_filtered, 0], self.dataset['item_angle'][ids_filtered, 1:], K=10, shuffle=True, debug=False) params_fit = cross_valid_outputs['best_fit'] resp = em_circularmixture.compute_responsibilities(self.dataset['probe_angle'][ids_filtered, 0], self.dataset['item_angle'][ids_filtered, 0], self.dataset['item_angle'][ids_filtered, 1:], params_fit) self.dataset['em_fits']['kappa'][ids_filtered] = params_fit['kappa'] self.dataset['em_fits']['mixt_target'][ids_filtered] = params_fit['mixt_target'] self.dataset['em_fits']['mixt_nontargets'][ids_filtered] = params_fit['mixt_nontargets'] self.dataset['em_fits']['mixt_random'][ids_filtered] = params_fit['mixt_random'] self.dataset['em_fits']['resp_target'][ids_filtered] = resp['target'] self.dataset['em_fits']['resp_nontarget'][ids_filtered] = np.sum(resp['nontargets'], axis=1) self.dataset['em_fits']['resp_random'][ids_filtered] = resp['random'] self.dataset['em_fits']['train_LL'][ids_filtered] = params_fit['train_LL'] self.dataset['em_fits']['test_LL'][ids_filtered] = cross_valid_outputs['best_test_LL'] self.dataset['em_fits_angle_nitems_subjects'].setdefault(n_items, dict())[subject] = params_fit ## Now compute mean/std em_fits per n_items self.dataset['em_fits_angle_nitems']['mean'][n_items] = dict() self.dataset['em_fits_angle_nitems']['std'][n_items] = dict() self.dataset['em_fits_angle_nitems']['values'][n_items] = dict() # Need to extract the values for a subject/nitems pair, for all keys of em_fits. Annoying dictionary indexing needed emfits_keys = params_fit.keys() for key in emfits_keys: values_allsubjects = [self.dataset['em_fits_angle_nitems_subjects'][n_items][subject][key] for subject in self.dataset['em_fits_angle_nitems_subjects'][n_items]] self.dataset['em_fits_angle_nitems']['mean'][n_items][key] = np.mean(values_allsubjects) self.dataset['em_fits_angle_nitems']['std'][n_items][key] = np.std(values_allsubjects) self.dataset['em_fits_angle_nitems']['values'][n_items][key] = values_allsubjects # Colour trials for n_items_i, n_items in enumerate(self.dataset['n_items_space']): for subject_i, subject in enumerate(self.dataset['subject_space']): ids_filtered = ((self.dataset['subject']==subject) & (self.dataset['n_items'] == n_items) & (self.dataset.get('masked', False) == False)).flatten() ids_filtered = self.dataset['colour_trials'] & ids_filtered if ids_filtered.sum() > 0: print 'Colour trials, %d items, subject %d, %d datapoints' % (n_items, subject, self.dataset['probe_angle'][ids_filtered, 0].size) cross_valid_outputs = em_circularmixture.cross_validation_kfold(self.dataset['probe_colour'][ids_filtered, 0], self.dataset['item_colour'][ids_filtered, 0], self.dataset['item_colour'][ids_filtered, 1:], K=10, shuffle=True, debug=False) params_fit = cross_valid_outputs['best_fit'] resp = em_circularmixture.compute_responsibilities(self.dataset['probe_colour'][ids_filtered, 0], self.dataset['item_colour'][ids_filtered, 0], self.dataset['item_colour'][ids_filtered, 1:], params_fit) self.dataset['em_fits']['kappa'][ids_filtered] = params_fit['kappa'] self.dataset['em_fits']['mixt_target'][ids_filtered] = params_fit['mixt_target'] self.dataset['em_fits']['mixt_nontargets'][ids_filtered] = params_fit['mixt_nontargets'] self.dataset['em_fits']['mixt_random'][ids_filtered] = params_fit['mixt_random'] self.dataset['em_fits']['resp_target'][ids_filtered] = resp['target'] self.dataset['em_fits']['resp_nontarget'][ids_filtered] = np.sum(resp['nontargets'], axis=1) self.dataset['em_fits']['resp_random'][ids_filtered] = resp['random'] self.dataset['em_fits']['train_LL'][ids_filtered] = params_fit['train_LL'] self.dataset['em_fits']['test_LL'][ids_filtered] = cross_valid_outputs['best_test_LL'] self.dataset['em_fits_colour_nitems_subjects'].setdefault(n_items, dict())[subject] = params_fit ## Now compute mean/std em_fits per n_items self.dataset['em_fits_colour_nitems']['mean'][n_items] = dict() self.dataset['em_fits_colour_nitems']['std'][n_items] = dict() self.dataset['em_fits_colour_nitems']['values'][n_items] = dict() # Need to extract the values for a subject/nitems pair, for all keys of em_fits. Annoying dictionary indexing needed emfits_keys = params_fit.keys() for key in emfits_keys: values_allsubjects = [self.dataset['em_fits_colour_nitems_subjects'][n_items][subject][key] for subject in self.dataset['em_fits_colour_nitems_subjects'][n_items]] self.dataset['em_fits_colour_nitems']['mean'][n_items][key] = np.mean(values_allsubjects) self.dataset['em_fits_colour_nitems']['std'][n_items][key] = np.std(values_allsubjects) self.dataset['em_fits_colour_nitems']['values'][n_items][key] = values_allsubjects ## Construct array versions of the em_fits_nitems mixture proportions, for convenience self.construct_arrays_em_fits()
def launcher_do_mixed_special_stimuli(args): ''' Fit mixed model, varying the ratio_conj See how the precision of recall and mixture model parameters evolve ''' print "Doing a piece of work for launcher_do_mixed_special_stimuli" try: # Convert Argparse.Namespace to dict all_parameters = vars(args) except TypeError: # Assume it's already done assert type(args) is dict, "args is neither Namespace nor dict, WHY?" all_parameters = args print all_parameters # Create DataIO # (complete label with current variable state) dataio = DataIO(output_folder=all_parameters['output_directory'], label=all_parameters['label'].format(**all_parameters)) save_every = 1 run_counter = 0 # Parameters to vary ratio_space = (np.arange(0, all_parameters['M']**0.5)**2.)/all_parameters['M'] # Result arrays result_all_precisions = np.nan*np.ones((ratio_space.size, all_parameters['num_repetitions'])) result_em_fits = np.nan*np.ones((ratio_space.size, 5, all_parameters['num_repetitions'])) # kappa, mixt_target, mixt_nontarget, mixt_random, ll result_em_resp = np.nan*np.ones((ratio_space.size, 1+all_parameters['T'], all_parameters['N'], all_parameters['num_repetitions'])) # If desired, will automatically save all Model responses. if all_parameters['subaction'] == 'collect_responses': result_responses = np.nan*np.ones((ratio_space.size, all_parameters['N'], all_parameters['num_repetitions'])) result_target = np.nan*np.ones((ratio_space.size, all_parameters['N'], all_parameters['num_repetitions'])) result_nontargets = np.nan*np.ones((ratio_space.size, all_parameters['N'], all_parameters['T']-1, all_parameters['num_repetitions'])) search_progress = progress.Progress(ratio_space.size*all_parameters['num_repetitions']) for repet_i in xrange(all_parameters['num_repetitions']): for ratio_i, ratio_conj in enumerate(ratio_space): print "%.2f%%, %s left - %s" % (search_progress.percentage(), search_progress.time_remaining_str(), search_progress.eta_str()) print "Fit for ratio_conj=%.2f, %d/%d" % (ratio_conj, repet_i+1, all_parameters['num_repetitions']) # Update parameter all_parameters['ratio_conj'] = ratio_conj ### WORK WORK WORK work? ### # Generate specific stimuli all_parameters['stimuli_generation'] = 'specific_stimuli' # Instantiate (random_network, data_gen, stat_meas, sampler) = launchers.init_everything(all_parameters) # Sample sampler.run_inference(all_parameters) # Compute precision result_all_precisions[ratio_i, repet_i] = sampler.get_precision() # Fit mixture model curr_params_fit = em_circularmixture.fit(*sampler.collect_responses()) curr_resp = em_circularmixture.compute_responsibilities(*(sampler.collect_responses() + (curr_params_fit,) )) result_em_fits[ratio_i, :, repet_i] = [curr_params_fit[key] for key in ('kappa', 'mixt_target', 'mixt_nontargets', 'mixt_random', 'train_LL')] result_em_resp[ratio_i, 0, :, repet_i] = curr_resp['target'] result_em_resp[ratio_i, 1:-1, :, repet_i] = curr_resp['nontargets'].T result_em_resp[ratio_i, -1, :, repet_i] = curr_resp['random'] print result_all_precisions[ratio_i, repet_i], curr_params_fit # If needed, store responses if all_parameters['subaction'] == 'collect_responses': (responses, target, nontarget) = sampler.collect_responses() result_responses[ratio_i, :, repet_i] = responses result_target[ratio_i, :, repet_i] = target result_nontargets[ratio_i, ..., repet_i] = nontarget print "collected responses" ### /Work ### search_progress.increment() if run_counter % save_every == 0 or search_progress.done(): dataio.save_variables_default(locals()) run_counter += 1 # Finished dataio.save_variables_default(locals()) print "All finished" return locals()
def fit_mixture_model(self): N = self.dataset['probe'].size # Initialize empty arrays and dicts self.dataset['em_fits'] = dict(kappa=np.empty(N), mixt_target=np.empty(N), mixt_nontargets=np.empty(N), mixt_nontargets_sum=np.empty(N), mixt_random=np.empty(N), resp_target=np.empty(N), resp_nontarget=np.empty(N), resp_random=np.empty(N), train_LL=np.empty(N), test_LL=np.empty(N), K=np.empty(N), bic=np.empty(N), aic=np.empty(N), ) for key in self.dataset['em_fits']: self.dataset['em_fits'][key].fill(np.nan) self.dataset['target'] = np.empty(N) self.dataset['em_fits_subjects_nitems'] = dict() for subject in np.unique(self.dataset['subject']): self.dataset['em_fits_subjects_nitems'][subject] = dict() self.dataset['em_fits_nitems'] = dict(mean=dict(), std=dict(), values=dict()) # Compute mixture model fits per n_items and per subject for n_items in np.unique(self.dataset['n_items']): for subject in np.unique(self.dataset['subject']): ids_filter = (self.dataset['subject'] == subject).flatten() & \ (self.dataset['n_items'] == n_items).flatten() print "Fit mixture model, %d items, subject %d, %d datapoints" % (subject, n_items, np.sum(ids_filter)) self.dataset['target'][ids_filter] = self.dataset['item_angle'][ids_filter, 0] params_fit = em_circmixtmodel.fit( self.dataset['response'][ids_filter, 0], self.dataset['item_angle'][ids_filter, 0], self.dataset['item_angle'][ids_filter, 1:] ) params_fit['mixt_nontargets_sum'] = np.sum( params_fit['mixt_nontargets'] ) resp = em_circmixtmodel.compute_responsibilities( self.dataset['response'][ids_filter, 0], self.dataset['item_angle'][ids_filter, 0], self.dataset['item_angle'][ids_filter, 1:], params_fit ) # Copy all data for k, v in params_fit.iteritems(): self.dataset['em_fits'][k][ids_filter] = v self.dataset['em_fits']['resp_target'][ids_filter] = \ resp['target'] self.dataset['em_fits']['resp_nontarget'][ids_filter] = \ np.sum(resp['nontargets'], axis=1) self.dataset['em_fits']['resp_random'][ids_filter] = \ resp['random'] self.dataset['em_fits_subjects_nitems'][subject][n_items] = params_fit ## Now compute mean/std em_fits per n_items self.dataset['em_fits_nitems']['mean'][n_items] = dict() self.dataset['em_fits_nitems']['std'][n_items] = dict() self.dataset['em_fits_nitems']['values'][n_items] = dict() # Need to extract the values for a subject/nitems pair, for all keys of em_fits. Annoying dictionary indexing needed emfits_keys = params_fit.keys() for key in emfits_keys: values_allsubjects = [self.dataset['em_fits_subjects_nitems'][subject][n_items][key] for subject in np.unique(self.dataset['subject'])] self.dataset['em_fits_nitems']['mean'][n_items][key] = np.mean(values_allsubjects) self.dataset['em_fits_nitems']['std'][n_items][key] = np.std(values_allsubjects) self.dataset['em_fits_nitems']['values'][n_items][key] = values_allsubjects ## Construct array versions of the em_fits_nitems mixture proportions, for convenience self.construct_arrays_em_fits()
def launcher_do_hierarchical_special_stimuli_varyMMlower(args): ''' Fit Hierarchical model, varying the ratio of M to Mlower See how the precision of recall and mixture model parameters evolve ''' print "Doing a piece of work for launcher_do_mixed_special_stimuli" try: # Convert Argparse.Namespace to dict all_parameters = vars(args) except TypeError: # Assume it's already done assert type(args) is dict, "args is neither Namespace nor dict, WHY?" all_parameters = args print all_parameters # Create DataIO # (complete label with current variable state) dataio = DataIO(output_folder=all_parameters['output_directory'], label=all_parameters['label'].format(**all_parameters)) save_every = 1 run_counter = 0 # Parameters to vary M_space = np.arange(1, all_parameters['M']+1) M_lower_space = np.arange(2, all_parameters['M']+1, 2) MMlower_all = np.array(cross(M_space, M_lower_space)) MMlower_valid_space = MMlower_all[np.nonzero(np.sum(MMlower_all, axis=1) == all_parameters['M'])[0]] # limit space, not too big... MMlower_valid_space = MMlower_valid_space[::5] print "MMlower size", MMlower_valid_space.shape[0] # Result arrays result_all_precisions = np.nan*np.ones((MMlower_valid_space.shape[0], all_parameters['num_repetitions'])) result_em_fits = np.nan*np.ones((MMlower_valid_space.shape[0], 5, all_parameters['num_repetitions'])) # kappa, mixt_target, mixt_nontarget, mixt_random, ll result_em_resp = np.nan*np.ones((MMlower_valid_space.shape[0], 1+all_parameters['T'], all_parameters['N'], all_parameters['num_repetitions'])) # If desired, will automatically save all Model responses. if all_parameters['subaction'] == 'collect_responses': result_responses = np.nan*np.ones((MMlower_valid_space.shape[0], all_parameters['N'], all_parameters['num_repetitions'])) result_target = np.nan*np.ones((MMlower_valid_space.shape[0], all_parameters['N'], all_parameters['num_repetitions'])) result_nontargets = np.nan*np.ones((MMlower_valid_space.shape[0], all_parameters['N'], all_parameters['T']-1, all_parameters['num_repetitions'])) search_progress = progress.Progress(MMlower_valid_space.shape[0]*all_parameters['num_repetitions']) for repet_i in xrange(all_parameters['num_repetitions']): for MMlower_i, MMlower in enumerate(MMlower_valid_space): print "%.2f%%, %s left - %s" % (search_progress.percentage(), search_progress.time_remaining_str(), search_progress.eta_str()) print "Fit for M=%d, Mlower=%d, %d/%d" % (MMlower[0], MMlower[1], repet_i+1, all_parameters['num_repetitions']) # Update parameter all_parameters['M'] = MMlower[0] all_parameters['M_layer_one'] = MMlower[1] ### WORK WORK WORK work? ### # Generate specific stimuli all_parameters['stimuli_generation'] = 'specific_stimuli' all_parameters['code_type'] = 'hierarchical' # Instantiate (random_network, data_gen, stat_meas, sampler) = launchers.init_everything(all_parameters) # Sample sampler.run_inference(all_parameters) # Compute precision result_all_precisions[MMlower_i, repet_i] = sampler.get_precision() # Fit mixture model curr_params_fit = em_circularmixture.fit(*sampler.collect_responses()) curr_resp = em_circularmixture.compute_responsibilities(*(sampler.collect_responses() + (curr_params_fit,) )) print curr_params_fit result_em_fits[MMlower_i, :, repet_i] = [curr_params_fit[key] for key in ('kappa', 'mixt_target', 'mixt_nontargets', 'mixt_random', 'train_LL')] result_em_resp[MMlower_i, 0, :, repet_i] = curr_resp['target'] result_em_resp[MMlower_i, 1:-1, :, repet_i] = curr_resp['nontargets'].T result_em_resp[MMlower_i, -1, :, repet_i] = curr_resp['random'] # If needed, store responses if all_parameters['subaction'] == 'collect_responses': (responses, target, nontarget) = sampler.collect_responses() result_responses[MMlower_i, :, repet_i] = responses result_target[MMlower_i, :, repet_i] = target result_nontargets[MMlower_i, ..., repet_i] = nontarget print "collected responses" ### /Work ### search_progress.increment() if run_counter % save_every == 0 or search_progress.done(): dataio.save_variables_default(locals()) run_counter += 1 # Finished dataio.save_variables_default(locals()) print "All finished" return locals()