def main(): parser = ArgumentParser(description="GraphZoom") parser.add_argument("-d", "--dataset", type=str, default="cora", \ help="input dataset") parser.add_argument("-o", "--coarse", type=str, default="simple", \ help="choose either simple_coarse or lamg_coarse, [simple, lamg]") parser.add_argument("-c", "--mcr_dir", type=str, default="/opt/matlab/R2018A/", \ help="directory of matlab compiler runtime (only required by lamg_coarsen)") parser.add_argument("-s", "--search_ratio", type=int, default=12, \ help="control the search space in graph fusion process (only required by lamg_coarsen)") parser.add_argument("-r", "--reduce_ratio", type=int, default=2, \ help="control graph coarsening levels (only required by lamg_coarsen)") parser.add_argument("-v", "--level", type=int, default=1, \ help="number of coarsening levels (only required by simple_coarsen)") parser.add_argument("-n", "--num_neighs", type=int, default=2, \ help="control k-nearest neighbors in graph fusion process") parser.add_argument("-l", "--lda", type=float, default=0.1, \ help="control self loop in adjacency matrix") parser.add_argument("-e", "--embed_path", type=str, default="embed_results/embeddings.npy", \ help="path of embedding result") parser.add_argument("-m", "--embed_method", type=str, default="deepwalk", \ help="[deepwalk, node2vec, graphsage]") parser.add_argument("-f", "--fusion", default=True, action="store_false", \ help="whether use graph fusion") parser.add_argument("-p", "--power", default=False, action="store_true", \ help="Strong power of graph filter, set True to enhance filter power") parser.add_argument("-g", "--sage_model", type=str, default="mean", \ help="aggregation function in graphsage") parser.add_argument("-w", "--sage_weighted", default=True, action="store_false", \ help="whether consider weighted reduced graph") args = parser.parse_args() dataset = args.dataset feature_path = "dataset/{}/{}-feats.npy".format(dataset, dataset) fusion_input_path = "dataset/{}/{}.mtx".format(dataset, dataset) reduce_results = "reduction_results/" mapping_path = "{}Mapping.mtx".format(reduce_results) if args.fusion: coarsen_input_path = "dataset/{}/fused_{}.mtx".format(dataset, dataset) else: coarsen_input_path = "dataset/{}/{}.mtx".format(dataset, dataset) ######Load Data###### print("%%%%%% Loading Graph Data %%%%%%") laplacian = json2mtx(dataset) ## whether node features are required if args.fusion or args.embed_method == "graphsage": feature = np.load(feature_path) ######Graph Fusion###### if args.fusion: print("%%%%%% Starting Graph Fusion %%%%%%") fusion_start = time.process_time() laplacian = graph_fusion(laplacian, feature, args.num_neighs, args.mcr_dir, args.coarse,\ fusion_input_path, args.search_ratio, reduce_results, mapping_path, dataset) fusion_time = time.process_time() - fusion_start ######Graph Reduction###### print("%%%%%% Starting Graph Reduction %%%%%%") reduce_start = time.process_time() if args.coarse == "simple": G, projections, laplacians, level = sim_coarse(laplacian, args.level) reduce_time = time.process_time() - reduce_start elif args.coarse == "lamg": os.system('./run_coarsening.sh {} {} {} n {}'.format(args.mcr_dir, \ coarsen_input_path, args.reduce_ratio, reduce_results)) reduce_time = read_time("{}CPUtime.txt".format(reduce_results)) G = mtx2graph("{}Gs.mtx".format(reduce_results)) level = read_levels("{}NumLevels.txt".format(reduce_results)) projections, laplacians = construct_proj_laplacian( laplacian, level, reduce_results) else: raise NotImplementedError ######Embed Reduced Graph###### print("%%%%%% Starting Graph Embedding %%%%%%") if args.embed_method == "deepwalk": embed_start = time.process_time() embeddings = deepwalk(G) elif args.embed_method == "node2vec": embed_start = time.process_time() embeddings = node2vec(G) elif args.embed_method == "graphsage": from embed_methods.graphsage.graphsage import graphsage nx.set_node_attributes(G, False, "test") nx.set_node_attributes(G, False, "val") ## obtain mapping operator if args.coarse == "lamg": mapping = normalize(mtx2matrix(mapping_path), norm='l1', axis=1) else: mapping = identity(feature.shape[0]) for p in projections: mapping = mapping @ p mapping = normalize(mapping, norm='l1', axis=1).transpose() ## control iterations for training coarse_ratio = mapping.shape[1] / mapping.shape[0] ## map node feats to the coarse graph feats = mapping @ feature embed_start = time.process_time() embeddings = graphsage(G, feats, args.sage_model, args.sage_weighted, int(1000 / coarse_ratio)) embed_time = time.process_time() - embed_start ######Refinement###### print("%%%%%% Starting Graph Refinement %%%%%%") refine_start = time.process_time() embeddings = refinement(level, projections, laplacians, embeddings, args.lda, args.power) refine_time = time.process_time() - refine_start ######Save Embeddings###### np.save(args.embed_path, embeddings) ######Evaluation###### lr("dataset/{}/".format(dataset), args.embed_path, dataset) ######Report timing information###### print("%%%%%% CPU time %%%%%%") if args.fusion: total_time = fusion_time + reduce_time + embed_time + refine_time print(f"Graph Fusion Time: {fusion_time:.3f}") else: total_time = reduce_time + embed_time + refine_time print("Graph Fusion Time: 0") print(f"Graph Reduction Time: {reduce_time:.3f}") print(f"Graph Embedding Time: {embed_time:.3f}") print(f"Graph Refinement Time: {refine_time:.3f}") print( f"Total Time = Fusion_time + Reduction_time + Embedding_time + Refinement_time = {total_time:.3f}" )
fusion_output_dir, mapping_path, dataset) fusion_end = time.process_time() fusion_time = fusion_end - fusion_start ######Graph Reduction###### print("%%%%%% Starting Graph Reduction %%%%%%") os.system('./run_coarsening.sh {} {} {} n {}'.format(mcr_dir, input_path, ratio, output_dir)) reduce_time = read_time(cputime_path) ######Embed Reduced Graph###### G = mtx2graph(mtx_path) print("%%%%%% Starting Graph Embedding %%%%%%") if args.embed_method == "deepwalk": embed_start = time.process_time() embeddings = deepwalk(G) embed_end = time.process_time() elif args.embed_method == "node2vec": embed_start = time.process_time() embeddings = node2vec(G) embed_end = time.process_time() elif args.embed_method == "graphsage": from embed_methods.graphsage.graphsage import graphsage nx.set_node_attributes(G, False, "test") nx.set_node_attributes(G, False, "val") mapping = normalize(mtx2matrix(mapping_path), norm='l1', axis=1) feats = mapping @ feature
def main(): parser = ArgumentParser(description="GraphZoom") parser.add_argument("-d", "--dataset", type=str, default="cora", help="input dataset") parser.add_argument("-c", "--mcr_dir", type=str, default="/opt/matlab/R2018A/", help="directory of matlab compiler runtime") parser.add_argument( "-s", "--search_ratio", type=int, default=12, help="control the search space in graph fusion process") parser.add_argument("-k", "--kpower", type=int, default=2, help="control the graph filter power") parser.add_argument("-r", "--reduce_ratio", type=int, default=2, help="control graph coarsening levels") parser.add_argument( "-n", "--num_neighs", type=int, default=2, help="control k-nearest neighbors in graph fusion process") parser.add_argument("-l", "--lda", type=float, default=0.1, help="control self loop in adjacency matrix") parser.add_argument("-e", "--embed_path", type=str, default="embed_results/embeddings.npy", help="path of embedding result") parser.add_argument("-m", "--embed_method", type=str, default="dgi", help="[deepwalk, node2vec, graphsage, dgi]") parser.add_argument("-f", "--fusion", default=False, action="store_true", help="whether use graph fusion") parser.add_argument( "-p", "--power", default=False, action="store_true", help="Strong power of graph filter, set True to enhance filter power") parser.add_argument("-g", "--sage_model", type=str, default="mean", help="aggregation function in graphsage") parser.add_argument("-w", "--sage_weighted", default=True, action="store_false", help="whether consider weighted reduced graph") args = parser.parse_args() dataset = args.dataset mcr_dir = args.mcr_dir search_ratio = args.search_ratio num_neighs = args.num_neighs ratio = args.reduce_ratio lda = args.lda mapping_path = "reduction_results/Mapping.mtx" feature_path = "dataset/{}/{}-feats.npy".format(dataset, dataset) fusion_input_path = "dataset/{}/{}.mtx".format(dataset, dataset) fusion_output_dir = "reduction_results/" output_dir = "reduction_results/" mtx_path = "reduction_results/Gs.mtx" level_path = "reduction_results/NumLevels.txt" proj_dir = "reduction_results" save_dir = args.embed_path eval_dataset = "dataset/{}/".format(dataset) reduce_method = "graphzoom" cputime_path = "reduction_results/CPUtime.txt" if args.fusion: input_path = "dataset/{}/fused_{}.mtx".format(dataset, dataset) else: input_path = "dataset/{}/{}.mtx".format(dataset, dataset) ######Load Data###### print("%%%%%% Loading Graph Data %%%%%%") if os.path.exists(fusion_input_path): laplacian = mmread(fusion_input_path) else: laplacian = json2mtx(dataset) if args.fusion or args.embed_method == "graphsage" or args.embed_method == "dgi": ##whether feature is needed feature = np.load(feature_path) ######Graph Fusion###### if args.fusion: print("%%%%%% Starting Graph Fusion %%%%%%") fusion_start = time.process_time() laplacian = graph_fusion(laplacian, feature, num_neighs, mcr_dir, fusion_input_path, search_ratio, fusion_output_dir, mapping_path, dataset) fusion_end = time.process_time() fusion_time = fusion_end - fusion_start ######Graph Reduction###### print("%%%%%% Starting Graph Reduction %%%%%%") os.system('./run_coarsening.sh {} {} {} n {}'.format( mcr_dir, input_path, ratio, output_dir)) reduce_time = read_time(cputime_path) ######Embed Reduced Graph###### G = mtx2graph(mtx_path) print("%%%%%% Starting Graph Embedding %%%%%%") if args.embed_method == "deepwalk": embed_start = time.process_time() embeddings = deepwalk(G) embed_end = time.process_time() elif args.embed_method == "node2vec": embed_start = time.process_time() embeddings = node2vec(G) embed_end = time.process_time() elif args.embed_method == "graphsage": from embed_methods.graphsage.graphsage import graphsage nx.set_node_attributes(G, False, "test") nx.set_node_attributes(G, False, "val") mapping = normalize(mtx2matrix(mapping_path), norm='l1', axis=1) feats = mapping @ feature embed_start = time.process_time() embeddings = graphsage(G, feats, args.sage_model, args.sage_weighted, int(10000 / args.reduce_ratio)) embed_end = time.process_time() elif args.embed_method == "dgi": from embed_methods.dgi.execute import dgi mapping = normalize(mtx2matrix(mapping_path), norm='l1', axis=1) feats = mapping @ feature embed_start = time.process_time() embeddings = dgi(G, feats) embed_end = time.process_time() embed_time = embed_end - embed_start ######Load Refinement Data###### levels = read_levels(level_path) projections, coarse_laplacian = construct_proj_laplacian( laplacian, levels, proj_dir) ######Refinement###### print("%%%%%% Starting Graph Refinement %%%%%%") feat = normalize(projections[0], norm='l1', axis=1) @ feature refine_start = time.process_time() embeddings = refinement(levels, projections, coarse_laplacian, embeddings, lda, args.power, args.kpower, feat) refine_end = time.process_time() refine_time = refine_end - refine_start ######Save Embeddings###### np.save(save_dir, embeddings) ######Evaluation###### lr(eval_dataset, save_dir, dataset) ######Report timing information###### print("%%%%%% Single CPU time %%%%%%") if args.fusion: total_time = fusion_time + reduce_time + embed_time + refine_time time_info = [ fusion_time, reduce_time, embed_time, refine_time, total_time ] print("Graph Fusion Time: {}".format(fusion_time)) else: total_time = reduce_time + embed_time + refine_time time_info = [reduce_time, embed_time, refine_time, total_time] print("Graph Reduction Time: {}".format(reduce_time)) print("Graph Embedding Time: {}".format(embed_time)) print("Graph Refinement Time: {}".format(refine_time)) print( "Total Time = Fusion_time + Reduction_time + Embedding_time + Refinement_time = {}" .format(total_time))
def main(): parser = ArgumentParser(description="ne") parser.add_argument("-d", "--dataset", type=str, default="cora", \ help="input dataset") parser.add_argument("-o", "--coarse", type=str, default="simple", \ help="choose either simple_coarse or lamg_coarse, [simple, lamg]") parser.add_argument("-c", "--mcr_dir", type=str, default="/opt/matlab/R2018A/", \ help="directory of matlab compiler runtime (only required by lamg_coarsen)") parser.add_argument("-s", "--search_ratio", type=int, default=12, \ help="control the search space in graph fusion process (only required by lamg_coarsen)") parser.add_argument("-r", "--reduce_ratio", type=int, default=2, \ help="control graph coarsening levels (only required by lamg_coarsen)") parser.add_argument("-v", "--level", type=int, default=1, \ help="number of coarsening levels (only required by simple_coarsen)") parser.add_argument("-n", "--num_neighs", type=int, default=2, \ help="control k-nearest neighbors in graph fusion process") parser.add_argument("-l", "--lda", type=float, default=0.1, \ help="control self loop in adjacency matrix") parser.add_argument("-e", "--embed_path", type=str, default="embed_results/embeddings_palone_deepwalk.npy", \ help="path of embedding result") parser.add_argument("-m", "--embed_method", type=str, default="deepwalk", \ help="[deepwalk, node2vec, graphsage]") parser.add_argument("-f", "--fusion", default=True, action="store_false", \ help="whether use graph fusion") parser.add_argument("-p", "--power", default=False, action="store_true", \ help="Strong power of graph filter, set True to enhance filter power") parser.add_argument("-g", "--sage_model", type=str, default="mean", \ help="aggregation function in graphsage") parser.add_argument("-w", "--sage_weighted", default=True, action="store_false", \ help="whether consider weighted reduced graph") args = parser.parse_args() dataset = args.dataset feature_path = "dataset/{}/{}-feats.npy".format(dataset, dataset) fusion_input_path = "dataset/{}/{}.mtx".format(dataset, dataset) reduce_results = "reduction_results/" mapping_path = "{}Mapping.mtx".format(reduce_results) if args.fusion: coarsen_input_path = "dataset/{}/fused_{}.mtx".format(dataset, dataset) else: coarsen_input_path = "dataset/{}/{}.mtx".format(dataset, dataset) ######Load Data###### print("%%%%%% Loading Graph Data %%%%%%") if args.dataset == "ogb": d_name = "ogbl-ppa" from ogb.linkproppred import LinkPropPredDataset dataset = LinkPropPredDataset(name=d_name) print(dataset) print(dataset[0]) split_edge = dataset.get_edge_split() print(split_edge) # train_edge, valid_edge, test_edge = split_edge["train"], split_edge["valid"], split_edge["test"] graph = dataset[0] # graph: library-agnostic graph object print(graph['edge_index'].shape) print(graph['edge_feat']) print(graph['node_feat']) # print((np.array(graph['node_feat']) == 0.0).all()) graph['directed'] = False print(graph) graph_nodes = [i for i in range(0, graph['num_nodes'])] G = nx.Graph() G.add_nodes_from(graph_nodes) G.add_edges_from(graph['edge_index'].T) # nx.draw(G, with_labels=True) print(G.nodes) # plt.show() laplacian = laplacian_matrix(G) print(laplacian) else: path = "dataset/ppi/ppi.mtx" G = mtx2graph(path) laplacian, edges = json2mtx(dataset) ## whether node features are required if args.fusion or args.embed_method == "graphsage": if args.dataset == 'ogb': feature = graph['node_feat'] else: feature = np.load(feature_path) # print(feature[1][0]) ######Embed Reduced Graph###### print("%%%%%% Starting Graph Embedding %%%%%%") if args.embed_method == "deepwalk": embed_start = time.process_time() embeddings = deepwalk(G) elif args.embed_method == "node2vec": embed_start = time.process_time() embeddings = node2vec(G) elif args.embed_method == "graphsage": from embed_methods.graphsage.graphsage import graphsage nx.set_node_attributes(G, False, "test") nx.set_node_attributes(G, False, "val") ## obtain mapping operator if args.coarse == "lamg": mapping = normalize(mtx2matrix(mapping_path), norm='l1', axis=1) else: mapping = identity(feature.shape[0]) for p in projections: mapping = mapping @ p mapping = normalize(mapping, norm='l1', axis=1).transpose() ## control iterations for training coarse_ratio = mapping.shape[1] / mapping.shape[0] ## map node feats to the coarse graph feats = mapping @ feature embed_start = time.process_time() embeddings = graphsage(G, feats, args.sage_model, args.sage_weighted, int(1000 / coarse_ratio)) embed_time = time.process_time() - embed_start ######Save Embeddings###### np.save(args.embed_path, embeddings) ######Evaluation###### print("%%%%%% Starting Evaluation %%%%%%") # link prediction embeds = np.load(args.embed_path) ''' if args.dataset == "ogb": acc, pre, sen, mcc, auc = linkprediction_ogb(split_edge, embeds) else: acc, pre, sen, mcc, auc = linkprediction(edges, embeds, dataset)''' print("Running regression..") # node prediction # run_regression(np.array(train_embeds), np.array(train_labels), np.array(test_embeds), np.array(test_labels)) # lr("dataset/{}/".format(dataset), args.embed_path, dataset) ######Report timing information######å print("%%%%%% CPU time %%%%%%") if args.fusion: total_time = embed_time print(f"Graph Fusion Time:") else: total_time = embed_time print("Graph Fusion Time: 0") print(f"Graph Embedding Time: {embed_time:.3f}") print(f"Total Time = Embedding_time = {total_time:.3f}")
def main(): parser = ArgumentParser(description="GraphZoom") parser.add_argument("-d", "--dataset", type=str, default="cora", help="input dataset") parser.add_argument("-c", "--mcr_dir", type=str, default="/usr/local/MATLAB/MATLAB_Runtime/v94", help="directory of matlab compiler runtime") parser.add_argument( "-s", "--search_ratio", type=int, default=12, help="control the search space in graph fusion process") parser.add_argument( "-r", "--reduce_ratio", type=int, default=2, # ? difference between level? help="control graph coarsening levels") parser.add_argument( "-n", "--num_neighs", type=int, default=2, help="control k-nearest neighbors in graph fusion process") parser.add_argument("-l", "--lda", type=float, default=0.1, help="control self loop in adjacency matrix") parser.add_argument("-e", "--embed_path", type=str, default="embed_results/", help="path of embedding result") parser.add_argument("-m", "--embed_method", type=str, default="deepwalk", help="[deepwalk, node2vec, graphsage]") parser.add_argument("-pre", "--prefix", type=str, default="") parser.add_argument("-pj", "--proj", type=str, default='fusion', help="projection matrix type") parser.add_argument("-emb_arch", "--emb_arch", default='GCN') parser.add_argument( "-p", "--power", default=False, action="store_true", help="Strong power of graph filter, set True to enhance filter power") parser.add_argument("-g", "--sage_model", type=str, default="mean", help="aggregation function in graphsage") parser.add_argument("-w", "--sage_weighted", default=True, action="store_false", help="whether consider weighted reduced graph") parser.add_argument("-el", "--embed_level", type=int, default=1) args = parser.parse_args() dataset = args.dataset # feature_path = "{}/dataset/{}/{}-feats.npy".format(args.prefix, dataset, dataset) fusion_input_path = "dataset/{}/{}.mtx".format(dataset, dataset) proj_matrix_type = args.proj reduce_results = f"reduction_results/{dataset}/{proj_matrix_type}/" coarsen_flag = True if not Path(reduce_results).exists(): Path(reduce_results).mkdir(parents=True) else: coarsen_flag = False print('skip fusion & coarsen') mapping_path = "{}Mapping.mtx".format(reduce_results) if args.proj in ('fusion'): input_path = "dataset/{}/fused_{}.mtx".format(dataset, dataset) else: input_path = "dataset/{}/{}.mtx".format(dataset, dataset) print(f'coarse_input_path: {input_path}') ######Load Data###### print("%%%%%% Loading Graph Data %%%%%%") laplacian, feature = load_dataset(dataset, args.prefix) # if args.fusion or args.embed_method == "graphsage": # whether feature is needed # feature = np.load(feature_path) ######Graph Fusion###### fusion_time, reduce_time = 0, 0 if Path(input_path).exists(): laplacian = mmread(input_path) print('load previous dataset laplacian') else: print("%%%%%% Starting Graph Fusion %%%%%%") print('start fusion calculation') fusion_start = time.process_time() laplacian = graph_fusion( laplacian, feature, args.num_neighs, args.mcr_dir, fusion_input_path, args.search_ratio, reduce_results, mapping_path, dataset) # load original mapping matrix, fusion on it fusion_time = time.process_time() - fusion_start print("Graph Fusion Time: {}".format(fusion_time)) ######Graph Reduction###### # ! ignore fusion coarsen if args.proj not in ['border', 'one_hot']: print("%%%%%% Starting Graph Reduction %%%%%%") os.system('./run_coarsening.sh {} {} {} n {}'.format( args.mcr_dir, input_path, args.reduce_ratio, reduce_results)) reduce_time = read_time("{}CPUtime.txt".format(reduce_results)) else: print(f'load original projections') ######Embed Reduced Graph###### G = mtx2graph("{}Gs.mtx".format(reduce_results)) # G = mtx2graph("dataset/{}/{}_ori.mtx".format(dataset, dataset)) levels = read_levels("{}NumLevels.txt".format(reduce_results)) print("%%%%%% Starting Graph Embedding %%%%%%") print(G.number_of_edges(), G.number_of_nodes()) embed_start = time.process_time() if args.embed_method == "deepwalk": embeddings = deepwalk(G) elif args.embed_method == "node2vec": embeddings = node2vec(G) elif args.embed_method == "graphsage": from embed_methods.graphsage.graphsage import graphsage nx.set_node_attributes(G, False, "test") nx.set_node_attributes(G, False, "val") mapping = normalize(mtx2matrix(mapping_path), norm='l1', axis=1) feats = mapping @ feature embeddings = graphsage(G, feats, args.sage_model, args.sage_weighted, int(1000 / args.reduce_ratio)) elif args.embed_method == 'ft': emb_path = f'../embeddings/{args.emb_arch}_{args.dataset}_emb_level_{levels}_mask.npy' print(f'emb_path: {emb_path}') # embeddings = np.load(f'{prefix}/{args.dataset}_emb_level_1.npy') embeddings = np.load(emb_path) embed_time = time.process_time() - embed_start ######Load Refinement Data###### # print(embeddings.shape) # corase_nodes * 128 projections, coarse_laplacian = construct_proj_laplacian( laplacian, levels, reduce_results) ######Refinement###### print("%%%%%% Starting Graph Refinement %%%%%%") refine_start = time.process_time() embeddings = refinement(levels, projections, coarse_laplacian, embeddings, args.lda, args.power) refine_time = time.process_time() - refine_start ######Save Embeddings###### embed_path = f'{args.embed_path}/{args.dataset}_level_{levels}.npy' print(f'embed_path: {embed_path}') np.save(embed_path, embeddings) #! FK ######Evaluation###### if args.prefix != '': lr("{}/dataset/{}/".format(args.prefix, dataset), embed_path, dataset) else: lr("dataset/{}/".format(dataset), embed_path, dataset) ######Report timing information###### print("%%%%%% Single CPU time %%%%%%") if coarsen_flag: total_time = fusion_time + reduce_time + embed_time + refine_time print("Graph Fusion Time: {}".format(fusion_time)) else: total_time = reduce_time + embed_time + refine_time print("Graph Fusion Time: 0") print("Graph Reduction Time: {}".format(reduce_time)) print("Graph Embedding Time: {:.3f} Mins".format(embed_time / 60)) print("Graph Refinement Time: {}".format(refine_time)) print( "Total Time = Fusion_time + Reduction_time + Embedding_time + Refinement_time = {}" .format(total_time))
def main(): parser = ArgumentParser(description="Original") parser.add_argument("-d", "--dataset", type=str, default="cora", help="input dataset") parser.add_argument("-e", "--embed_path", type=str, default="embed_results/original_embeddings.npy", help="path of embedding result") parser.add_argument("-m", "--embed_method", type=str, default="deeepwalk", help="specific embedding method") parser.add_argument("-f", "--fusion", default=False, action="store_true", help="whether use graph fusion") parser.add_argument("-g", "--sage_model", type=str, default="mean", help="aggregation function in graphsage") parser.add_argument("-w", "--sage_weighted", type=bool, default=False, help="whether consider weighted reduced graph") args = parser.parse_args() dataset = args.dataset mtx_path = "dataset/{}/{}.mtx".format(dataset, dataset) save_dir = args.embed_path eval_dataset = "dataset/{}/".format(dataset) embed_method = args.embed_method print("%%%%%% Starting Graph Embedding %%%%%%") if embed_method == "graphsage": G_data = json.load( open("dataset/{}/{}-G.json".format(dataset, dataset))) G = json_graph.node_link_graph(G_data) feature = np.load("dataset/{}/{}-feats.npy".format(dataset, dataset)) embed_start = time.process_time() embeddings = graphsage(G, feature, args.sage_model, args.sage_weighted, 10000) embed_end = time.process_time() elif embed_method == "dgi": G_data = json.load( open("dataset/{}/{}-G.json".format(dataset, dataset))) G = json_graph.node_link_graph(G_data) feature = np.load("dataset/{}/{}-feats.npy".format(dataset, dataset)) embed_start = time.process_time() embeddings = dgi(G, feature) embed_end = time.process_time() else: G = nx.Graph() with open(mtx_path) as ff: for i, line in enumerate(ff): info = line.split() if i < 2: continue elif i == 2: num_nodes = int(info[0]) elif int(info[0]) != int(info[1]): G.add_edge(int(info[0]) - 1, int(info[1]) - 1, wgt=abs(float(info[2]))) for i in range(num_nodes): G.add_node(i) embed_start = time.process_time() if embed_method == "deepwalk": embeddings = deepwalk(G) elif embed_method == "node2vec": embeddings = node2vec(G) embed_end = time.process_time() total_embed_time = embed_end - embed_start np.save(save_dir, embeddings) lr(eval_dataset, save_dir, dataset) print("Total Baseline Embedding Time: {}".format(total_embed_time))