in2out_category = {'F1': 'F', 'F2': 'F', 'F3': 'F', 'F4': 'F'} # output variables are written in the following format using species and # category after applying the mapping varname_format = '{species}_{category}_{source_type}' # output path and filename output_path = os.path.join('oae-art-example', '{online}', 'tno') output_name = 'tno-art.nc' # Output grid is European domain (rotated pole coordinates) cosmo_grid = COSMOGrid( nx=192, ny=164, dx=0.12, dy=0.12, xmin=-16.08, ymin=-9.54, pollon=-170.0, pollat=43.0, ) # resolution of shapefile used for country mask shpfile_resolution = "10m" # number of processes nprocs = 16 # metadata added as global attributes to netCDF output file nc_metadata = { "DESCRIPTION": "Gridded annual emissions", "DATAORIGIN": "TNO-CAMS",
# mapping from input to output species (input is used for missing keys) in2out_category = {} # output variables are written in the following format using species and # category after applying mapping as well as source_type (AREA or POINT) for # TNO inventories varname_format = '{species}_{category}' # not providing source_type will add up # point and area sources # COSMO domain output_grid = COSMOGrid( nx=450, #900 ny=300, #600 dx=0.02, #0.01 dy=0.02, #0.01 xmin=-4.92, ymin=-3.18, pollon=-170.0, pollat=43.0, ) # output path and filename output_path = os.path.join('outputs', '{online}') output_name = "tno.nc" # resolution of shape file used for country mask shpfile_resolution = "10m" # number of processes computing the mapping inventory->COSMO-grid nprocs = 18
import os from emiproc.grids import COSMOGrid, TNOGrid inv_1 = os.path.join('outputs', '{online}', 'tno.nc') inv_name_1 = '_TNO' inv_2 = os.path.join('outputs', '{online}', 'carbocount.nc') inv_name_2 = '_Carbocount' inv_out = os.path.join('outputs', '{online}', 'all_emissions.nc') # COSMO domain cosmo_grid = COSMOGrid( nx=900, ny=600, dx=0.01, dy=0.01, xmin=-4.92, ymin=-3.18, pollon=-170.0, pollat=43.0, ) nc_metadata = { "DESCRIPTION": "Gridded annual emissions", "DATAORIGIN": "TNO and carbocount-CH", "CREATOR": "Jean-Matthieu Haussaire", "EMAIL": "*****@*****.**", "AFFILIATION": "Empa Duebendorf, Switzerland", "DATE CREATED": time.ctime(time.time()), }
# mapping from input to output species (input is used for missing keys) # All the categories will be summed. # There is no mapping between these catgories and GNFR yet in2out_category = {} # output variables are written in the following format using species varname_format = '{species}_EDGAR' # Domain # CHE_Europe domain output_grid = COSMOGrid( nx=760, ny=610, dx=0.05, dy=0.05, xmin=-17, ymin=-11, pollon=-170, pollat=43, ) # output path and filename output_path = os.path.join('outputs', 'EDGAR','{online}') output_name = "edgar.nc" # resolution of shape file used for country mask shpfile_resolution = "10m" # number of processes computing the mapping inventory->COSMO-grid nprocs = 18
"K": 'Others', "L": 'Others', } # output variables are written in the following format using species and # category after applying mapping as well as source_type (AREA or POINT) for # TNO inventories varname_format = '{species}_{category}_{source_type}' # not providing source_type will add up # point and area sources # COSMO domain cosmo_grid = COSMOGrid( nx=700, ny=600, dx=0.01, dy=0.01, xmin=0.0, ymin=1.5, pollon=-170.0, pollat=43.0, ) # output path and filename output_path = os.path.join('outputs', '{online}') output_name = "smartcarbExt_TNO6.nc" # resolution of shape file used for country mask shpfile_resolution = "110m" # number of processes computing the mapping inventory->COSMO-grid nprocs = 8
# mapping from input to output species (input is used for missing keys) in2out_species = {'co2_ff': 'CO2', 'co2_bf': 'CO2'} # mapping from input to output category (input is used for missing keys) in2out_category = {'F1': 'F', 'F2': 'F', 'F3': 'F'} # output variables are written in the following format using species and # category after applying the mapping varname_format = '{species}_{category}_{source_type}' # COSMO domain output_grid = COSMOGrid( nx=90, ny=60, dx=0.1, dy=0.1, xmin=-4.92, ymin=-3.18, pollon=-170.0, pollat=43.0, ) # output path and filename output_path = os.path.join("TNO-test", '{online}') output_name = "test-tno.nc" # resolution of shapefile used for country mask shpfile_resolution = "110m" # number of processes computing the mapping inventory->COSMO-grid nprocs = 18
"K": 'Others', "L": 'Others', } # output variables are written in the following format using species and # category after applying mapping as well as source_type (AREA or POINT) for # TNO inventories varname_format = '{species}_{category}_{source_type}' # not providing source_type will add up # point and area sources # COSMO domain cosmo_grid = COSMOGrid( nx=70, ny=60, dx=0.1, dy=0.1, xmin=-1.4, ymin=2.5, pollon=-170.0, pollat=43.0, ) # output path and filename output_path = os.path.join('outputs', '{online}') output_name = "smartcarb_coarse_TNO6.nc" # resolution of shape file used for country mask shpfile_resolution = "110m" # number of processes computing the mapping inventory->COSMO-grid nprocs = 8
varname_format = '{species}_{category}_ch' # Online or offline emissions (offline emissions have grid with 2-cell boundary) offline = False # Europe domain (rotated pole coordinates) xmin = -16.08 ymin = -9.54 nx = 192 ny = 164 output_grid = COSMOGrid( nx=nx, ny=ny, dx=0.12, dy=0.12, xmin=xmin, ymin=ymin, pollon=-170.0, pollat=43.0, ) # output filename output_path = os.path.join('oae-art-example', '{online}', 'swiss') output_name = 'swiss-art.nc' # resolution of shape file used for country mask shpfile_resolution = "10m" # number of processes used nprocs = 16