in2out_category = {'F1': 'F', 'F2': 'F', 'F3': 'F', 'F4': 'F'}

# output variables are written in the following format using species and
# category after applying the mapping
varname_format = '{species}_{category}_{source_type}'

# output path and filename
output_path = os.path.join('oae-art-example', '{online}', 'tno')
output_name = 'tno-art.nc'

# Output grid is European domain (rotated pole coordinates)
cosmo_grid = COSMOGrid(
    nx=192,
    ny=164,
    dx=0.12,
    dy=0.12,
    xmin=-16.08,
    ymin=-9.54,
    pollon=-170.0,
    pollat=43.0,
)

# resolution of shapefile used for country mask
shpfile_resolution = "10m"

# number of processes
nprocs = 16

# metadata added as global attributes to netCDF output file
nc_metadata = {
    "DESCRIPTION": "Gridded annual emissions",
    "DATAORIGIN": "TNO-CAMS",
# mapping from input to output species (input is used for missing keys)
in2out_category = {}

# output variables are written in the following format using species and
# category after applying mapping as well as source_type (AREA or POINT) for
# TNO inventories
varname_format = '{species}_{category}'  # not providing source_type will add up
# point and area sources

# COSMO domain
output_grid = COSMOGrid(
    nx=450,  #900
    ny=300,  #600
    dx=0.02,  #0.01
    dy=0.02,  #0.01
    xmin=-4.92,
    ymin=-3.18,
    pollon=-170.0,
    pollat=43.0,
)

# output path and filename
output_path = os.path.join('outputs', '{online}')
output_name = "tno.nc"

# resolution of shape file used for country mask
shpfile_resolution = "10m"

# number of processes computing the mapping inventory->COSMO-grid
nprocs = 18
예제 #3
0
import os
from emiproc.grids import COSMOGrid, TNOGrid

inv_1 = os.path.join('outputs', '{online}', 'tno.nc')
inv_name_1 = '_TNO'
inv_2 = os.path.join('outputs', '{online}', 'carbocount.nc')
inv_name_2 = '_Carbocount'

inv_out = os.path.join('outputs', '{online}', 'all_emissions.nc')

# COSMO domain
cosmo_grid = COSMOGrid(
    nx=900,
    ny=600,
    dx=0.01,
    dy=0.01,
    xmin=-4.92,
    ymin=-3.18,
    pollon=-170.0,
    pollat=43.0,
)

nc_metadata = {
    "DESCRIPTION": "Gridded annual emissions",
    "DATAORIGIN": "TNO and carbocount-CH",
    "CREATOR": "Jean-Matthieu Haussaire",
    "EMAIL": "*****@*****.**",
    "AFFILIATION": "Empa Duebendorf, Switzerland",
    "DATE CREATED": time.ctime(time.time()),
}
# mapping from input to output species (input is used for missing keys)
# All the categories will be summed. 
# There is no mapping between these catgories and GNFR yet
in2out_category = {}

# output variables are written in the following format using species
varname_format = '{species}_EDGAR'

# Domain
# CHE_Europe domain
output_grid = COSMOGrid(
    nx=760,
    ny=610,
    dx=0.05,
    dy=0.05,
    xmin=-17,
    ymin=-11,
    pollon=-170,
    pollat=43,
)

# output path and filename
output_path = os.path.join('outputs', 'EDGAR','{online}')
output_name = "edgar.nc"


# resolution of shape file used for country mask
shpfile_resolution = "10m"

# number of processes computing the mapping inventory->COSMO-grid
nprocs = 18
예제 #5
0
    "K": 'Others',
    "L": 'Others',
}

# output variables are written in the following format using species and
# category after applying mapping as well as source_type (AREA or POINT) for
# TNO inventories
varname_format = '{species}_{category}_{source_type}'  # not providing source_type will add up
# point and area sources

# COSMO domain
cosmo_grid = COSMOGrid(
    nx=700,
    ny=600,
    dx=0.01,
    dy=0.01,
    xmin=0.0,
    ymin=1.5,
    pollon=-170.0,
    pollat=43.0,
)

# output path and filename
output_path = os.path.join('outputs', '{online}')
output_name = "smartcarbExt_TNO6.nc"

# resolution of shape file used for country mask
shpfile_resolution = "110m"

# number of processes computing the mapping inventory->COSMO-grid
nprocs = 8
예제 #6
0
# mapping from input to output species (input is used for missing keys)
in2out_species = {'co2_ff': 'CO2', 'co2_bf': 'CO2'}

# mapping from input to output category (input is used for missing keys)
in2out_category = {'F1': 'F', 'F2': 'F', 'F3': 'F'}

# output variables are written in the following format using species and
# category after applying the mapping
varname_format = '{species}_{category}_{source_type}'

# COSMO domain
output_grid = COSMOGrid(
    nx=90,
    ny=60,
    dx=0.1,
    dy=0.1,
    xmin=-4.92,
    ymin=-3.18,
    pollon=-170.0,
    pollat=43.0,
)

# output path and filename
output_path = os.path.join("TNO-test", '{online}')
output_name = "test-tno.nc"

# resolution of shapefile used for country mask
shpfile_resolution = "110m"

# number of processes computing the mapping inventory->COSMO-grid
nprocs = 18
예제 #7
0
    "K": 'Others',
    "L": 'Others',
}

# output variables are written in the following format using species and
# category after applying mapping as well as source_type (AREA or POINT) for
# TNO inventories
varname_format = '{species}_{category}_{source_type}'  # not providing source_type will add up
# point and area sources

# COSMO domain
cosmo_grid = COSMOGrid(
    nx=70,
    ny=60,
    dx=0.1,
    dy=0.1,
    xmin=-1.4,
    ymin=2.5,
    pollon=-170.0,
    pollat=43.0,
)

# output path and filename
output_path = os.path.join('outputs', '{online}')
output_name = "smartcarb_coarse_TNO6.nc"

# resolution of shape file used for country mask
shpfile_resolution = "110m"

# number of processes computing the mapping inventory->COSMO-grid
nprocs = 8
varname_format = '{species}_{category}_ch'

# Online or offline emissions (offline emissions have grid with 2-cell boundary)
offline = False

# Europe domain (rotated pole coordinates)
xmin = -16.08
ymin = -9.54
nx = 192
ny = 164

output_grid = COSMOGrid(
    nx=nx,
    ny=ny,
    dx=0.12,
    dy=0.12,
    xmin=xmin,
    ymin=ymin,
    pollon=-170.0,
    pollat=43.0,
)

# output filename
output_path = os.path.join('oae-art-example', '{online}', 'swiss')
output_name = 'swiss-art.nc'

# resolution of shape file used for country mask
shpfile_resolution = "10m"

# number of processes used
nprocs = 16