예제 #1
0
파일: bargrad.py 프로젝트: bxy8804/pyemir
    def run(self, rinput):
        self.logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        self.save_intermediate_img(hdulist, 'reduced_image.fits')

        try:
            rotang = hdr['ROTANG']
            tsutc1 = hdr['TSUTC1']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            if len(csupos) != 2 * EMIR_NBARS:
                raise RecipeError('Number of CSUPOS != 2 * NBARS')
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            self.logger.error(error)
            raise RecipeError(error)

        self.logger.debug('start finding bars')
        allpos, slits = find_bars(
            hdulist,
            rinput.bars_nominal_positions,
            csupos,
            dtur,
            average_box_row_size=rinput.average_box_row_size,
            average_box_col_size=rinput.average_box_col_size,
            fit_peak_npoints=rinput.fit_peak_npoints,
            median_filter_size=rinput.median_filter_size,
            logger=self.logger)

        self.logger.debug('end finding bars')

        if self.intermediate_results:
            with open('ds9.reg', 'w') as ds9reg:
                slits_to_ds9_reg(ds9reg, slits)

        result = self.create_result(
            frame=hdulist,
            slits=slits,
            positions9=allpos[9],
            positions7=allpos[7],
            positions5=allpos[5],
            positions3=allpos[3],
            DTU=dtub,
            ROTANG=rotang,
            TSUTC1=tsutc1,
            csupos=csupos,
            csusens=csusens,
        )
        return result
예제 #2
0
파일: bargrad.py 프로젝트: guaix-ucm/pyemir
    def run(self, rinput):
        self.logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        self.save_intermediate_img(hdulist, 'reduced_image.fits')

        try:
            rotang = hdr['ROTANG']
            tsutc1 = hdr['TSUTC1']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            if len(csupos) != 2 * EMIR_NBARS:
                raise RecipeError('Number of CSUPOS != 2 * NBARS')
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            self.logger.error(error)
            raise RecipeError(error)

        self.logger.debug('start finding bars')
        allpos, slits = find_bars(hdulist,
                                  rinput.bars_nominal_positions,
                                  csupos,
                                  dtur,
                                  average_box_row_size=rinput.average_box_row_size,
                                  average_box_col_size=rinput.average_box_col_size,
                                  fit_peak_npoints=rinput.fit_peak_npoints,
                                  median_filter_size=rinput.median_filter_size,
                                  logger=self.logger
                                  )

        self.logger.debug('end finding bars')

        if self.intermediate_results:
            with open('ds9.reg', 'w') as ds9reg:
                slits_to_ds9_reg(ds9reg, slits)

        result = self.create_result(frame=hdulist,
                                    slits=slits,
                                    positions9=allpos[9],
                                    positions7=allpos[7],
                                    positions5=allpos[5],
                                    positions3=allpos[3],
                                    DTU=dtub,
                                    ROTANG=rotang,
                                    TSUTC1=tsutc1,
                                    csupos=csupos,
                                    csusens=csusens,
                                    )
        return result
예제 #3
0
    def run(self, rinput):
        self.logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            tsutc1 = hdr['TSUTC1']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            self.logger.error(error)
            raise numina.exceptions.RecipeError(error)

        self.logger.debug('finding bars')
        # Processed array
        arr = hdulist[0].data

        # Median filter of processed array (two times)
        mfilter_size = rinput.median_filter_size

        self.logger.debug('median filtering X, %d columns', mfilter_size)
        arr_median = median_filter(arr, size=(1, mfilter_size))
        self.logger.debug('median filtering X, %d rows', mfilter_size)
        arr_median = median_filter(arr_median, size=(mfilter_size, 1))

        # Median filter of processed array (two times) in the other direction
        # for Y coordinates
        self.logger.debug('median filtering Y, %d rows', mfilter_size)
        arr_median_alt = median_filter(arr, size=(mfilter_size, 1))
        self.logger.debug('median filtering Y, %d columns', mfilter_size)
        arr_median_alt = median_filter(arr_median_alt, size=(1, mfilter_size))

        xfac = dtur[0] / EMIR_PIXSCALE
        yfac = -dtur[1] / EMIR_PIXSCALE

        vec = [yfac, xfac]
        self.logger.debug('DTU shift is %s', vec)

        # and the table of approx positions of the slits
        barstab = rinput.bars_nominal_positions
        # Currently, we only use fields 0 and 2
        # of the nominal positions file

        # Number or rows used
        # These other parameters cab be tuned also
        bstart = 1
        bend = 2047
        self.logger.debug('ignoring columns outside %d - %d',bstart, bend-1)

        # extract a region to average
        wy = (rinput.average_box_row_size // 2)
        wx = (rinput.average_box_col_size // 2)
        self.logger.debug('extraction window is %d rows, %d cols',2*wy+1, 2*wx+1)
        # Fit the peak with these points
        wfit = 2 * (rinput.fit_peak_npoints // 2) + 1
        self.logger.debug('fit with %d points', wfit)

        # Minimum threshold
        threshold = 5 * EMIR_RON
        # Savitsky and Golay (1964) filter to compute the X derivative
        # scipy >= xx has a savgol_filter function
        # for compatibility we do it manually

        allpos = {}
        ypos3_kernel = None
        slits = numpy.zeros((EMIR_NBARS, 8), dtype='float')

        self.logger.info('start finding bars')
        for ks in [3, 5, 7, 9]:
            self.logger.debug('kernel size is %d', ks)
            # S and G kernel for derivative
            kw = ks * (ks*ks-1) / 12.0
            coeffs_are = -numpy.arange((1-ks)//2, (ks-1)//2 + 1) / kw
            if ks == 3:
                ypos3_kernel = coeffs_are
            self.logger.debug('kernel weights are %s', coeffs_are)

            self.logger.debug('derive image in X direction')
            arr_deriv = convolve1d(arr_median, coeffs_are, axis=-1)
            # Axis 0 is
            #
            self.logger.debug('derive image in Y direction (with kernel=3)')
            arr_deriv_alt = convolve1d(arr_median_alt, ypos3_kernel, axis=0)

            positions = []
            for coords in barstab:
                lbarid = int(coords[0])
                rbarid = lbarid + EMIR_NBARS
                ref_y_coor = coords[1] + vec[1]
                poly_coeffs = coords[2:]
                prow = coor_to_pix_1d(ref_y_coor) - 1
                fits_row = prow + 1 # FITS pixel index

                # A function that returns the center of the bar
                # given its X position
                def center_of_bar(x):
                    # Pixel values are 0-based
                    return polyval(x+1-vec[0], poly_coeffs) + vec[1] - 1

                self.logger.debug('looking for bars with ids %d - %d', lbarid, rbarid)
                self.logger.debug('reference y position is Y %7.2f', ref_y_coor)

                # if ref_y_coor is outlimits, skip this bar
                # ref_y_coor is in FITS format
                if (ref_y_coor >= 2047) or (ref_y_coor <= 1):
                    self.logger.debug('reference y position is outlimits, skipping')
                    positions.append([lbarid, fits_row, fits_row, 1, 0, 3])
                    positions.append([rbarid, fits_row, fits_row, 1, 0, 3])
                    continue

                # Left bar
                self.logger.debug('measure left border (%d)', lbarid)

                centery, xpos, fwhm, st = char_bar_peak_l(arr_deriv, prow, bstart, bend, threshold,
                                                          center_of_bar, wx=wx, wy=wy, wfit=wfit)
                xpos1 = xpos
                positions.append([lbarid, centery+1, fits_row, xpos+1, fwhm, st])

                # Right bar
                self.logger.debug('measure rigth border (%d)', rbarid)
                centery, xpos, fwhm, st = char_bar_peak_r(arr_deriv, prow, bstart, bend, threshold,
                                                          center_of_bar, wx=wx, wy=wy, wfit=wfit)
                positions.append([rbarid, centery+1, fits_row, xpos+1, fwhm, st])
                xpos2 = xpos
                #
                if st == 0:
                    self.logger.debug('measure top-bottom borders')
                    try:
                        y1, y2, statusy = char_bar_height(arr_deriv_alt, xpos1, xpos2, centery, threshold,
                                                          wh=35, wfit=wfit)
                    except Exception as error:
                        self.logger.warning('Error computing height: %s', error)
                        statusy = 44

                    if statusy in [0, 40]:
                        # Main border is detected
                        positions[-1][1] = y2 + 1
                        positions[-2][1] = y2 + 1
                    else:
                        # Update status
                        positions[-1][-1] = 4
                        positions[-2][-1] = 4
                else:
                    self.logger.debug('slit is not complete')
                    y1, y2 = 0, 0

                # Update positions

                self.logger.debug('bar %d centroid-y %9.4f, row %d x-pos %9.4f, FWHM %6.3f, status %d', *positions[-2])
                self.logger.debug('bar %d centroid-y %9.4f, row %d x-pos %9.4f, FWHM %6.3f, status %d', *positions[-1])

                if ks == 5:
                    slits[lbarid - 1] = [xpos1, y2, xpos2, y2, xpos2, y1, xpos1, y1]
                    # FITS coordinates
                    slits[lbarid - 1] += 1.0
                    self.logger.debug('inserting bars %d-%d into "slits"', lbarid, rbarid)

            allpos[ks] = numpy.asarray(positions, dtype='float') # GCS doesn't like lists of lists

        self.logger.debug('end finding bars')
        result = self.create_result(frame=hdulist,
                                    slits=slits,
                                    positions9=allpos[9],
                                    positions7=allpos[7],
                                    positions5=allpos[5],
                                    positions3=allpos[3],
                                    DTU=dtub,
                                    ROTANG=rotang,
                                    TSUTC1=tsutc1,
                                    csupos=csupos,
                                    csusens=csusens,
                                    )
        return result
예제 #4
0
    def run(self, rinput):

        logger = logging.getLogger('numina.recipes.emir')

        logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            logger.error(error)
            raise numina.exceptions.RecipeError(error)

        logger.debug('finding bars')

        arr = hdulist[0].data

        # Median filter
        logger.debug('median filtering')
        mfilter_size = rinput.median_filter_size

        arr_median = median_filter(arr, size=mfilter_size)

        # Image is mapped between 0 and 1
        # for the full range [0: 2**16]
        logger.debug('image scaling to 0-1')
        arr_grey = normalize_raw(arr_median)

        # Find borders
        logger.debug('find borders')
        canny_sigma = rinput.canny_sigma
        # These threshols corespond roughly with
        # value x (2**16 - 1)
        high_threshold = rinput.canny_high_threshold
        low_threshold = rinput.canny_low_threshold

        edges = canny(arr_grey,
                      sigma=canny_sigma,
                      high_threshold=high_threshold,
                      low_threshold=low_threshold)

        # Number or rows used
        # These other parameters cab be tuned also
        total = 5
        maxdist = 1.0
        bstart = 100
        bend = 1900

        positions = []
        nt = total // 2

        xfac = dtur[0] / EMIR_PIXSCALE
        yfac = -dtur[1] / EMIR_PIXSCALE

        vec = [yfac, xfac]
        logger.debug('DTU shift is %s', vec)

        # Based on the 'edges image'
        # and the table of approx positions of the slits
        barstab = rinput.bars_nominal_positions

        # Currently, we only use fields 0 and 2
        # of the nominal positions file

        for coords in barstab:
            lbarid = int(coords[0])
            rbarid = lbarid + 55
            ref_y_coor = coords[2] + vec[1]
            prow = coor_to_pix_1d(ref_y_coor) - 1
            fits_row = prow + 1  # FITS pixel index

            logger.debug('looking for bars with ids %d - %d', lbarid, rbarid)
            logger.debug('reference y position is Y %7.2f', ref_y_coor)
            # Find the position of each bar

            bpos = find_position(edges, prow, bstart, bend, total)

            nbars_found = len(bpos)

            # If no bar is found, append and empty token
            if nbars_found == 0:
                logger.debug('bars %d, %d not found at row %d', lbarid, rbarid,
                             fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            elif nbars_found == 2:

                # Order values by increasing X
                centl, centr = sorted(bpos, key=lambda cen: cen[0])
                c1 = centl[0]
                c2 = centr[0]

                logger.debug('bars found  at row %d between %7.2f - %7.2f',
                             fits_row, c1, c2)
                # Compute FWHM of the collapsed profile

                cslit = arr_grey[prow - nt:prow + nt + 1, :]
                pslit = cslit.mean(axis=0)

                # Add 1 to return FITS coordinates
                epos, epos_f, error = locate_bar_l(pslit, c1)
                thisres1 = lbarid, fits_row, epos + 1, epos_f + 1, error

                epos, epos_f, error = locate_bar_r(pslit, c2)
                thisres2 = rbarid, fits_row, epos + 1, epos_f + 1, error

            elif nbars_found == 1:
                logger.warning(
                    'only 1 edge found  at row %d, not yet implemented',
                    fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            else:
                logger.warning(
                    '3 or more edges found  at row %d, not yet implemented',
                    fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            positions.append(thisres1)
            positions.append(thisres2)

        logger.debug('end finding bars')
        result = self.create_result(
            frame=hdulist,
            positions=positions,
            DTU=dtub,
            ROTANG=rotang,
            csupos=csupos,
            csusens=csusens,
            param_median_filter_size=rinput.median_filter_size,
            param_canny_high_threshold=rinput.canny_high_threshold,
            param_canny_low_threshold=rinput.canny_low_threshold)
        return result
예제 #5
0
    def run(self, rinput):

        logger = logging.getLogger('numina.recipes.emir')

        logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            logger.error(error)
            raise numina.exceptions.RecipeError(error)

        logger.debug('finding bars')

        arr = hdulist[0].data

        # Median filter
        logger.debug('median filtering')
        mfilter_size = rinput.median_filter_size

        arr_median = median_filter(arr, size=mfilter_size)

        # Image is mapped between 0 and 1
        # for the full range [0: 2**16]
        logger.debug('image scaling to 0-1')
        arr_grey = normalize_raw(arr_median)

        # Find borders
        logger.debug('find borders')
        canny_sigma = rinput.canny_sigma
        # These threshols corespond roughly with
        # value x (2**16 - 1)
        high_threshold = rinput.canny_high_threshold
        low_threshold = rinput.canny_low_threshold

        edges = canny(arr_grey, sigma=canny_sigma,
                      high_threshold=high_threshold,
                      low_threshold=low_threshold)

        # Number or rows used
        # These other parameters cab be tuned also
        total = 5
        maxdist = 1.0
        bstart = 100
        bend = 1900

        positions = []
        nt = total // 2

        xfac = dtur[0] / EMIR_PIXSCALE
        yfac = -dtur[1] / EMIR_PIXSCALE

        vec = [yfac, xfac]
        logger.debug('DTU shift is %s', vec)

        # Based on the 'edges image'
        # and the table of approx positions of the slits
        barstab = rinput.bars_nominal_positions

        # Currently, we only use fields 0 and 2
        # of the nominal positions file

        for coords in barstab:
            lbarid = int(coords[0])
            rbarid = lbarid + 55
            ref_y_coor = coords[2] + vec[1]
            prow = coor_to_pix_1d(ref_y_coor) - 1
            fits_row = prow + 1 # FITS pixel index

            logger.debug('looking for bars with ids %d - %d', lbarid, rbarid)
            logger.debug('reference y position is Y %7.2f', ref_y_coor)
            # Find the position of each bar

            bpos = find_position(edges, prow, bstart, bend, total)

            nbars_found = len(bpos)

            # If no bar is found, append and empty token
            if nbars_found == 0:
                logger.debug('bars %d, %d not found at row %d', lbarid, rbarid, fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            elif nbars_found == 2:

                # Order values by increasing X
                centl, centr = sorted(bpos, key=lambda cen: cen[0])
                c1 = centl[0]
                c2 = centr[0]

                logger.debug('bars found  at row %d between %7.2f - %7.2f', fits_row, c1, c2)
                # Compute FWHM of the collapsed profile

                cslit = arr_grey[prow-nt:prow+nt+1,:]
                pslit = cslit.mean(axis=0)

                # Add 1 to return FITS coordinates
                epos, epos_f, error = locate_bar_l(pslit, c1)
                thisres1 = lbarid, fits_row, epos + 1, epos_f + 1, error


                epos, epos_f, error = locate_bar_r(pslit, c2)
                thisres2 = rbarid, fits_row, epos + 1, epos_f + 1, error

            elif nbars_found == 1:
                logger.warning('only 1 edge found  at row %d, not yet implemented', fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            else:
                logger.warning('3 or more edges found  at row %d, not yet implemented', fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            positions.append(thisres1)
            positions.append(thisres2)

        logger.debug('end finding bars')
        result = self.create_result(frame=hdulist,
                                    positions=positions,
                                    DTU=dtub,
                                    ROTANG=rotang,
                                    csupos=csupos,
                                    csusens=csusens,
                                    param_median_filter_size=rinput.median_filter_size,
                                    param_canny_high_threshold=rinput.canny_high_threshold,
                                    param_canny_low_threshold=rinput.canny_low_threshold
                                    )
        return result
예제 #6
0
    def run(self, rinput):
        self.logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            tsutc1 = hdr['TSUTC1']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            self.logger.error(error)
            raise numina.exceptions.RecipeError(error)

        self.logger.debug('finding bars')
        # Processed array
        arr = hdulist[0].data

        # Median filter of processed array (two times)
        mfilter_size = rinput.median_filter_size

        self.logger.debug('median filtering X, %d columns', mfilter_size)
        arr_median = median_filter(arr, size=(1, mfilter_size))
        self.logger.debug('median filtering X, %d rows', mfilter_size)
        arr_median = median_filter(arr_median, size=(mfilter_size, 1))

        # Median filter of processed array (two times) in the other direction
        # for Y coordinates
        self.logger.debug('median filtering Y, %d rows', mfilter_size)
        arr_median_alt = median_filter(arr, size=(mfilter_size, 1))
        self.logger.debug('median filtering Y, %d columns', mfilter_size)
        arr_median_alt = median_filter(arr_median_alt, size=(1, mfilter_size))

        xfac = dtur[0] / EMIR_PIXSCALE
        yfac = -dtur[1] / EMIR_PIXSCALE

        vec = [yfac, xfac]
        self.logger.debug('DTU shift is %s', vec)

        # and the table of approx positions of the slits
        barstab = rinput.bars_nominal_positions
        # Currently, we only use fields 0 and 2
        # of the nominal positions file

        # Number or rows used
        # These other parameters cab be tuned also
        bstart = 1
        bend = 2047
        self.logger.debug('ignoring columns outside %d - %d', bstart, bend - 1)

        # extract a region to average
        wy = (rinput.average_box_row_size // 2)
        wx = (rinput.average_box_col_size // 2)
        self.logger.debug('extraction window is %d rows, %d cols', 2 * wy + 1,
                          2 * wx + 1)
        # Fit the peak with these points
        wfit = 2 * (rinput.fit_peak_npoints // 2) + 1
        self.logger.debug('fit with %d points', wfit)

        # Minimum threshold
        threshold = 5 * EMIR_RON
        # Savitsky and Golay (1964) filter to compute the X derivative
        # scipy >= xx has a savgol_filter function
        # for compatibility we do it manually

        allpos = {}
        ypos3_kernel = None
        slits = numpy.zeros((EMIR_NBARS, 8), dtype='float')

        self.logger.info('start finding bars')
        for ks in [3, 5, 7, 9]:
            self.logger.debug('kernel size is %d', ks)
            # S and G kernel for derivative
            kw = ks * (ks * ks - 1) / 12.0
            coeffs_are = -numpy.arange((1 - ks) // 2, (ks - 1) // 2 + 1) / kw
            if ks == 3:
                ypos3_kernel = coeffs_are
            self.logger.debug('kernel weights are %s', coeffs_are)

            self.logger.debug('derive image in X direction')
            arr_deriv = convolve1d(arr_median, coeffs_are, axis=-1)
            # Axis 0 is
            #
            self.logger.debug('derive image in Y direction (with kernel=3)')
            arr_deriv_alt = convolve1d(arr_median_alt, ypos3_kernel, axis=0)

            positions = []
            for coords in barstab:
                lbarid = int(coords[0])
                rbarid = lbarid + EMIR_NBARS
                ref_y_coor = coords[1] + vec[1]
                poly_coeffs = coords[2:]
                prow = coor_to_pix_1d(ref_y_coor) - 1
                fits_row = prow + 1  # FITS pixel index

                # A function that returns the center of the bar
                # given its X position
                def center_of_bar(x):
                    # Pixel values are 0-based
                    return polyval(x + 1 - vec[0], poly_coeffs) + vec[1] - 1

                self.logger.debug('looking for bars with ids %d - %d', lbarid,
                                  rbarid)
                self.logger.debug('reference y position is Y %7.2f',
                                  ref_y_coor)

                # if ref_y_coor is outlimits, skip this bar
                # ref_y_coor is in FITS format
                if (ref_y_coor >= 2047) or (ref_y_coor <= 1):
                    self.logger.debug(
                        'reference y position is outlimits, skipping')
                    positions.append([lbarid, fits_row, fits_row, 1, 0, 3])
                    positions.append([rbarid, fits_row, fits_row, 1, 0, 3])
                    continue

                # Left bar
                self.logger.debug('measure left border (%d)', lbarid)

                centery, xpos, fwhm, st = char_bar_peak_l(arr_deriv,
                                                          prow,
                                                          bstart,
                                                          bend,
                                                          threshold,
                                                          center_of_bar,
                                                          wx=wx,
                                                          wy=wy,
                                                          wfit=wfit)
                xpos1 = xpos
                positions.append(
                    [lbarid, centery + 1, fits_row, xpos + 1, fwhm, st])

                # Right bar
                self.logger.debug('measure rigth border (%d)', rbarid)
                centery, xpos, fwhm, st = char_bar_peak_r(arr_deriv,
                                                          prow,
                                                          bstart,
                                                          bend,
                                                          threshold,
                                                          center_of_bar,
                                                          wx=wx,
                                                          wy=wy,
                                                          wfit=wfit)
                positions.append(
                    [rbarid, centery + 1, fits_row, xpos + 1, fwhm, st])
                xpos2 = xpos
                #
                if st == 0:
                    self.logger.debug('measure top-bottom borders')
                    try:
                        y1, y2, statusy = char_bar_height(arr_deriv_alt,
                                                          xpos1,
                                                          xpos2,
                                                          centery,
                                                          threshold,
                                                          wh=35,
                                                          wfit=wfit)
                    except Exception as error:
                        self.logger.warning('Error computing height: %s',
                                            error)
                        statusy = 44

                    if statusy in [0, 40]:
                        # Main border is detected
                        positions[-1][1] = y2 + 1
                        positions[-2][1] = y2 + 1
                    else:
                        # Update status
                        positions[-1][-1] = 4
                        positions[-2][-1] = 4
                else:
                    self.logger.debug('slit is not complete')
                    y1, y2 = 0, 0

                # Update positions

                self.logger.debug(
                    'bar %d centroid-y %9.4f, row %d x-pos %9.4f, FWHM %6.3f, status %d',
                    *positions[-2])
                self.logger.debug(
                    'bar %d centroid-y %9.4f, row %d x-pos %9.4f, FWHM %6.3f, status %d',
                    *positions[-1])

                if ks == 5:
                    slits[lbarid -
                          1] = [xpos1, y2, xpos2, y2, xpos2, y1, xpos1, y1]
                    # FITS coordinates
                    slits[lbarid - 1] += 1.0
                    self.logger.debug('inserting bars %d-%d into "slits"',
                                      lbarid, rbarid)

            allpos[ks] = numpy.asarray(
                positions, dtype='float')  # GCS doesn't like lists of lists

        self.logger.debug('end finding bars')
        result = self.create_result(
            frame=hdulist,
            slits=slits,
            positions9=allpos[9],
            positions7=allpos[7],
            positions5=allpos[5],
            positions3=allpos[3],
            DTU=dtub,
            ROTANG=rotang,
            TSUTC1=tsutc1,
            csupos=csupos,
            csusens=csusens,
        )
        return result