def _set_logging_manager(self) -> None: """Set logging manager.""" if Meta.config["learner_config"]["local_rank"] in [-1, 0]: if self.use_step_base_counter: self.logging_manager = LoggingManager(self.n_batches_per_epoch, 0, self.start_step) else: self.logging_manager = LoggingManager( self.n_batches_per_epoch, self.start_epoch, self.start_epoch * self.n_batches_per_epoch, )
def _set_logging_manager(self) -> None: r"""Set logging manager.""" self.logging_manager = LoggingManager(self.n_batches_per_epoch)
class EmmentalLearner(object): r"""A class for emmental multi-task learning. Args: name(str, optional): Name of the learner, defaults to None. """ def __init__(self, name: Optional[str] = None) -> None: self.name = name if name is not None else type(self).__name__ def _set_logging_manager(self) -> None: r"""Set logging manager.""" self.logging_manager = LoggingManager(self.n_batches_per_epoch) def _set_optimizer(self, model: EmmentalModel) -> None: r"""Set optimizer for learning process. Args: model(EmmentalModel): The model to set up the optimizer. """ optimizer_config = Meta.config["learner_config"]["optimizer_config"] opt = optimizer_config["optimizer"] parameters = filter(lambda p: p.requires_grad, model.parameters()) optim_dict = { # PyTorch optimizer "asgd": optim.ASGD, # type: ignore "adadelta": optim.Adadelta, # type: ignore "adagrad": optim.Adagrad, # type: ignore "adam": optim.Adam, # type: ignore "adamw": optim.AdamW, # type: ignore "adamax": optim.Adamax, # type: ignore "lbfgs": optim.LBFGS, # type: ignore "rms_prop": optim.RMSprop, # type: ignore "r_prop": optim.Rprop, # type: ignore "sgd": optim.SGD, # type: ignore "sparse_adam": optim.SparseAdam, # type: ignore # Customize optimizer "bert_adam": BertAdam, } if opt in ["lbfgs", "r_prop", "sparse_adam"]: optimizer = optim_dict[opt]( parameters, lr=optimizer_config["lr"], **optimizer_config[f"{opt}_config"], ) elif opt in optim_dict.keys(): optimizer = optim_dict[opt]( parameters, lr=optimizer_config["lr"], weight_decay=optimizer_config["l2"], **optimizer_config[f"{opt}_config"], ) elif isinstance(opt, optim.Optimizer): # type: ignore optimizer = opt(parameters) else: raise ValueError(f"Unrecognized optimizer option '{opt}'") self.optimizer = optimizer if Meta.config["meta_config"]["verbose"]: logger.info(f"Using optimizer {self.optimizer}") def _set_lr_scheduler(self, model: EmmentalModel) -> None: r"""Set learning rate scheduler for learning process. Args: model(EmmentalModel): The model to set up lr scheduler. """ # Set warmup scheduler self._set_warmup_scheduler(model) # Set lr scheduler lr_scheduler_dict = { "exponential": optim.lr_scheduler.ExponentialLR, "plateau": optim.lr_scheduler.ReduceLROnPlateau, "step": optim.lr_scheduler.StepLR, "multi_step": optim.lr_scheduler.MultiStepLR, "cyclic": optim.lr_scheduler.CyclicLR, "one_cycle": optim.lr_scheduler.OneCycleLR, # type: ignore "cosine_annealing": optim.lr_scheduler.CosineAnnealingLR, } opt = Meta.config["learner_config"]["lr_scheduler_config"]["lr_scheduler"] lr_scheduler_config = Meta.config["learner_config"]["lr_scheduler_config"] if opt is None: lr_scheduler = None elif opt == "linear": total_steps = ( self.n_batches_per_epoch * Meta.config["learner_config"]["n_epochs"] ) linear_decay_func = lambda x: (total_steps - self.warmup_steps - x) / ( total_steps - self.warmup_steps ) lr_scheduler = optim.lr_scheduler.LambdaLR( self.optimizer, linear_decay_func # type: ignore ) elif opt in ["exponential", "step", "multi_step", "cyclic"]: lr_scheduler = lr_scheduler_dict[opt]( # type: ignore self.optimizer, **lr_scheduler_config[f"{opt}_config"] ) elif opt == "one_cycle": total_steps = ( self.n_batches_per_epoch * Meta.config["learner_config"]["n_epochs"] ) lr_scheduler = lr_scheduler_dict[opt]( # type: ignore self.optimizer, total_steps=total_steps, epochs=Meta.config["learner_config"]["n_epochs"], steps_per_epoch=self.n_batches_per_epoch, **lr_scheduler_config[f"{opt}_config"], ) elif opt == "cosine_annealing": total_steps = ( self.n_batches_per_epoch * Meta.config["learner_config"]["n_epochs"] ) lr_scheduler = lr_scheduler_dict[opt]( # type: ignore self.optimizer, total_steps, eta_min=lr_scheduler_config["min_lr"], **lr_scheduler_config[f"{opt}_config"], ) elif opt == "plateau": plateau_config = copy.deepcopy(lr_scheduler_config["plateau_config"]) del plateau_config["metric"] lr_scheduler = lr_scheduler_dict[opt]( self.optimizer, verbose=Meta.config["meta_config"]["verbose"], min_lr=lr_scheduler_config["min_lr"], **plateau_config, ) elif isinstance(opt, _LRScheduler): lr_scheduler = opt(self.optimizer) # type: ignore else: raise ValueError(f"Unrecognized lr scheduler option '{opt}'") self.lr_scheduler = lr_scheduler self.lr_scheduler_step_unit = Meta.config["learner_config"][ "lr_scheduler_config" ]["lr_scheduler_step_unit"] self.lr_scheduler_step_freq = Meta.config["learner_config"][ "lr_scheduler_config" ]["lr_scheduler_step_freq"] if Meta.config["meta_config"]["verbose"]: logger.info( f"Using lr_scheduler {repr(self.lr_scheduler)} with step every " f"{self.lr_scheduler_step_freq} {self.lr_scheduler_step_unit}." ) def _set_warmup_scheduler(self, model: EmmentalModel) -> None: r"""Set warmup learning rate scheduler for learning process. Args: model(EmmentalModel): The model to set up warmup scheduler. """ self.warmup_steps = 0 if Meta.config["learner_config"]["lr_scheduler_config"]["warmup_steps"]: warmup_steps = Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_steps" ] if warmup_steps < 0: raise ValueError(f"warmup_steps much greater or equal than 0.") warmup_unit = Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_unit" ] if warmup_unit == "epoch": self.warmup_steps = int(warmup_steps * self.n_batches_per_epoch) elif warmup_unit == "batch": self.warmup_steps = int(warmup_steps) else: raise ValueError( f"warmup_unit must be 'batch' or 'epoch', but {warmup_unit} found." ) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( self.optimizer, linear_warmup_func # type: ignore ) if Meta.config["meta_config"]["verbose"]: logger.info(f"Warmup {self.warmup_steps} batchs.") elif Meta.config["learner_config"]["lr_scheduler_config"]["warmup_percentage"]: warmup_percentage = Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_percentage" ] self.warmup_steps = int( warmup_percentage * Meta.config["learner_config"]["n_epochs"] * self.n_batches_per_epoch ) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( self.optimizer, linear_warmup_func # type: ignore ) if Meta.config["meta_config"]["verbose"]: logger.info(f"Warmup {self.warmup_steps} batchs.") else: warmup_scheduler = None self.warmup_scheduler = warmup_scheduler def _update_lr_scheduler( self, model: EmmentalModel, step: int, metric_dict: Dict[str, float] ) -> None: r"""Update the lr using lr_scheduler with each batch. Args: model(EmmentalModel): The model to update lr scheduler. step(int): The current step. """ cur_lr = self.optimizer.param_groups[0]["lr"] if self.warmup_scheduler and step < self.warmup_steps: self.warmup_scheduler.step() # type: ignore elif self.lr_scheduler is not None: lr_step_cnt = ( self.lr_scheduler_step_freq if self.lr_scheduler_step_unit == "batch" else self.lr_scheduler_step_freq * self.n_batches_per_epoch ) if (step + 1) % lr_step_cnt == 0: if ( Meta.config["learner_config"]["lr_scheduler_config"]["lr_scheduler"] != "plateau" ): self.lr_scheduler.step() # type: ignore elif ( Meta.config["learner_config"]["lr_scheduler_config"][ "plateau_config" ]["metric"] in metric_dict ): self.lr_scheduler.step( metric_dict[ # type: ignore Meta.config["learner_config"]["lr_scheduler_config"][ "plateau_config" ]["metric"] ] ) min_lr = Meta.config["learner_config"]["lr_scheduler_config"]["min_lr"] if min_lr and self.optimizer.param_groups[0]["lr"] < min_lr: self.optimizer.param_groups[0]["lr"] = min_lr if ( Meta.config["learner_config"]["lr_scheduler_config"]["reset_state"] and cur_lr != self.optimizer.param_groups[0]["lr"] ): logger.info("Reset the state of the optimizer.") self.optimizer.state = collections.defaultdict(dict) # Reset state def _set_task_scheduler(self) -> None: r"""Set task scheduler for learning process""" opt = Meta.config["learner_config"]["task_scheduler_config"]["task_scheduler"] if opt in ["sequential", "round_robin", "mixed"]: self.task_scheduler = SCHEDULERS[opt]( # type: ignore **Meta.config["learner_config"]["task_scheduler_config"][ f"{opt}_scheduler_config" ] ) elif isinstance(opt, Scheduler): self.task_scheduler = opt else: raise ValueError(f"Unrecognized task scheduler option '{opt}'") def _evaluate( self, model: EmmentalModel, dataloaders: List[EmmentalDataLoader], split: Union[List[str], str], ) -> Dict[str, float]: r"""Evaluate the model. Args: model(EmmentalModel): The model to evaluate. dataloaders(List[EmmentalDataLoader]): The data to evaluate. split(str): The split to evaluate. Returns: dict: The score dict. """ if not isinstance(split, list): valid_split = [split] else: valid_split = split valid_dataloaders = [ dataloader for dataloader in dataloaders if dataloader.split in valid_split ] return model.score(valid_dataloaders) def _logging( self, model: EmmentalModel, dataloaders: List[EmmentalDataLoader], batch_size: int, ) -> Dict[str, float]: r"""Checking if it's time to evaluting or checkpointing. Args: model(EmmentalModel): The model to log. dataloaders(List[EmmentalDataLoader]): The data to evaluate. batch_size(int): Batch size. Returns: dict: The score dict. """ # Switch to eval mode for evaluation model.eval() metric_dict = dict() self.logging_manager.update(batch_size) # Log the loss and lr metric_dict.update(self._aggregate_running_metrics(model)) # Evaluate the model and log the metric trigger_evaluation = self.logging_manager.trigger_evaluation() if trigger_evaluation: # Log task specific metric metric_dict.update( self._evaluate( model, dataloaders, Meta.config["learner_config"]["valid_split"] ) ) self.logging_manager.write_log(metric_dict) self._reset_losses() # Log metric dict every trigger evaluation time or full epoch if Meta.config["meta_config"]["verbose"] and ( trigger_evaluation or self.logging_manager.epoch_total == int(self.logging_manager.epoch_total) ): logger.info( f"{self.logging_manager.counter_unit.capitalize()}: " f"{self.logging_manager.unit_total:.2f} {metric_dict}" ) # Checkpoint the model if self.logging_manager.trigger_checkpointing(): self.logging_manager.checkpoint_model( model, self.optimizer, self.lr_scheduler, metric_dict ) self.logging_manager.write_log(metric_dict) self._reset_losses() # Switch to train mode model.train() return metric_dict def _aggregate_running_metrics(self, model: EmmentalModel) -> Dict[str, float]: r"""Calculate the running overall and task specific metrics. Args: model(EmmentalModel): The model to evaluate. Returns: dict: The score dict. """ metric_dict = dict() total_count = 0 # Log task specific loss for identifier in self.running_uids.keys(): count = len(self.running_uids[identifier]) if count > 0: metric_dict[identifier + "/loss"] = ( self.running_losses[identifier] / count ) total_count += count # Calculate average micro loss if total_count > 0: total_loss = sum(self.running_losses.values()) metric_dict["model/all/train/loss"] = total_loss / total_count micro_score_dict: Dict[str, List[ndarray]] = defaultdict(list) macro_score_dict: Dict[str, List[ndarray]] = defaultdict(list) # Calculate training metric for identifier in self.running_uids.keys(): task_name, data_name, split = identifier.split("/") metric_score = model.scorers[task_name].score( self.running_golds[identifier], self.running_probs[identifier], prob_to_pred(self.running_probs[identifier]), self.running_uids[identifier], ) for metric_name, metric_value in metric_score.items(): metric_dict[f"{identifier}/{metric_name}"] = metric_value # Collect average score identifier = construct_identifier(task_name, data_name, split, "average") metric_dict[identifier] = np.mean(list(metric_score.values())) micro_score_dict[split].extend(list(metric_score.values())) macro_score_dict[split].append(metric_dict[identifier]) # Collect split-wise micro/macro average score for split in micro_score_dict.keys(): identifier = construct_identifier("model", "all", split, "micro_average") metric_dict[identifier] = np.mean(micro_score_dict[split]) identifier = construct_identifier("model", "all", split, "macro_average") metric_dict[identifier] = np.mean(macro_score_dict[split]) # Log the learning rate metric_dict["model/all/train/lr"] = self.optimizer.param_groups[0]["lr"] return metric_dict def _reset_losses(self) -> None: r"""Reset running logs.""" self.running_uids: Dict[str, List[str]] = defaultdict(list) self.running_losses: Dict[str, ndarray] = defaultdict(float) self.running_probs: Dict[str, List[ndarray]] = defaultdict(list) self.running_golds: Dict[str, List[ndarray]] = defaultdict(list) def learn( self, model: EmmentalModel, dataloaders: List[EmmentalDataLoader] ) -> None: r"""The learning procedure of emmental MTL. Args: model(EmmentalModel): The emmental model that needs to learn. dataloaders(List[EmmentalDataLoader]): a list of dataloaders used to learn the model. """ # Generate the list of dataloaders for learning process train_split = Meta.config["learner_config"]["train_split"] if isinstance(train_split, str): train_split = [train_split] train_dataloaders = [ dataloader for dataloader in dataloaders if dataloader.split in train_split ] if not train_dataloaders: raise ValueError( f"Cannot find the specified train_split " f'{Meta.config["learner_config"]["train_split"]} in dataloaders.' ) # Set up task_scheduler self._set_task_scheduler() # Calculate the total number of batches per epoch self.n_batches_per_epoch = self.task_scheduler.get_num_batches( train_dataloaders ) # Set up logging manager self._set_logging_manager() # Set up optimizer self._set_optimizer(model) # Set up lr_scheduler self._set_lr_scheduler(model) # Set to training mode model.train() if Meta.config["meta_config"]["verbose"]: logger.info(f"Start learning...") self.metrics: Dict[str, float] = dict() self._reset_losses() for epoch_num in range(Meta.config["learner_config"]["n_epochs"]): batches = tqdm( enumerate(self.task_scheduler.get_batches(train_dataloaders, model)), total=self.n_batches_per_epoch, disable=(not Meta.config["meta_config"]["verbose"]), desc=f"Epoch {epoch_num}:", ) for batch_num, batch in batches: # Covert single batch into a batch list if not isinstance(batch, list): batch = [batch] total_batch_num = epoch_num * self.n_batches_per_epoch + batch_num batch_size = 0 # Set gradients of all model parameters to zero self.optimizer.zero_grad() for uids, X_dict, Y_dict, task_to_label_dict, data_name, split in batch: batch_size += len(next(iter(Y_dict.values()))) # Perform forward pass and calcualte the loss and count uid_dict, loss_dict, prob_dict, gold_dict = model( uids, X_dict, Y_dict, task_to_label_dict ) # Update running loss and count for task_name in uid_dict.keys(): identifier = f"{task_name}/{data_name}/{split}" self.running_uids[identifier].extend(uid_dict[task_name]) self.running_losses[identifier] += ( loss_dict[task_name].item() * len(uid_dict[task_name]) if len(loss_dict[task_name].size()) == 0 else torch.sum(loss_dict[task_name]).item() ) self.running_probs[identifier].extend(prob_dict[task_name]) self.running_golds[identifier].extend(gold_dict[task_name]) # Skip the backward pass if no loss is calcuated if not loss_dict: continue # Calculate the average loss loss = sum( [ model.weights[task_name] * task_loss if len(task_loss.size()) == 0 else torch.mean(model.weights[task_name] * task_loss) for task_name, task_loss in loss_dict.items() ] ) # Perform backward pass to calculate gradients loss.backward() # type: ignore # Clip gradient norm if Meta.config["learner_config"]["optimizer_config"]["grad_clip"]: torch.nn.utils.clip_grad_norm_( model.parameters(), Meta.config["learner_config"]["optimizer_config"]["grad_clip"], ) # Update the parameters self.optimizer.step() self.metrics.update(self._logging(model, dataloaders, batch_size)) batches.set_postfix(self.metrics) # Update lr using lr scheduler self._update_lr_scheduler(model, total_batch_num, self.metrics) model = self.logging_manager.close(model)
class EmmentalLearner(object): """A class for emmental multi-task learning. """ def __init__(self, name=None): self.name = name if name is not None else type(self).__name__ def _set_logging_manager(self): """Set logging manager.""" self.logging_manager = LoggingManager(self.n_batches_per_epoch) def _set_optimizer(self, model): """Set optimizer for learning process.""" # TODO: add more optimizer support and fp16 optimizer_config = Meta.config["learner_config"]["optimizer_config"] opt = optimizer_config["optimizer"] parameters = filter(lambda p: p.requires_grad, model.parameters()) if opt == "sgd": optimizer = optim.SGD( parameters, lr=optimizer_config["lr"], **optimizer_config["sgd_config"], weight_decay=optimizer_config["l2"], ) elif opt == "adam": optimizer = optim.Adam( parameters, lr=optimizer_config["lr"], **optimizer_config["adam_config"], weight_decay=optimizer_config["l2"], ) elif opt == "adamax": optimizer = optim.Adamax( parameters, lr=optimizer_config["lr"], **optimizer_config["adamax_config"], weight_decay=optimizer_config["l2"], ) elif opt == "bert_adam": optimizer = BertAdam( parameters, lr=optimizer_config["lr"], **optimizer_config["bert_adam_config"], weight_decay=optimizer_config["l2"], ) else: raise ValueError(f"Unrecognized optimizer option '{opt}'") logger.info(f"Using optimizer {optimizer}") self.optimizer = optimizer def _set_lr_scheduler(self, model): """Set learning rate scheduler for learning process.""" # Set warmup scheduler self._set_warmup_scheduler(model) # Set lr scheduler # TODO: add more lr scheduler support opt = Meta.config["learner_config"]["lr_scheduler_config"][ "lr_scheduler"] lr_scheduler_config = Meta.config["learner_config"][ "lr_scheduler_config"] if opt is None: lr_scheduler = None elif opt == "linear": total_steps = (self.n_batches_per_epoch * Meta.config["learner_config"]["n_epochs"]) linear_decay_func = lambda x: (total_steps - self.warmup_steps - x ) / (total_steps - self.warmup_steps ) lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, linear_decay_func) elif opt == "exponential": lr_scheduler = optim.lr_scheduler.ExponentialLR( self.optimizer, **lr_scheduler_config["exponential_config"]) elif opt == "step": lr_scheduler = optim.lr_scheduler.StepLR( self.optimizer, **lr_scheduler_config["step_config"]) elif opt == "multi_step": lr_scheduler = optim.lr_scheduler.MultiStepLR( self.optimizer, **lr_scheduler_config["multi_step_config"]) # elif opt == "reduce_on_plateau": # lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau( # self.optimizer, # min_lr=lr_scheduler_config["min_lr"], # **lr_scheduler_config["plateau_config"], # ) else: raise ValueError(f"Unrecognized lr scheduler option '{opt}'") self.lr_scheduler = lr_scheduler def _set_warmup_scheduler(self, model): """Set warmup learning rate scheduler for learning process.""" if Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_steps"]: warmup_steps = Meta.config["learner_config"][ "lr_scheduler_config"]["warmup_steps"] if warmup_steps < 0: raise ValueError(f"warmup_steps much greater or equal than 0.") warmup_unit = Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_unit"] if warmup_unit == "epoch": self.warmup_steps = int(warmup_steps * self.n_batches_per_epoch) elif warmup_unit == "batch": self.warmup_steps = int(warmup_steps) else: raise ValueError( f"warmup_unit must be 'batch' or 'epoch', but {warmup_unit} found." ) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( self.optimizer, linear_warmup_func) logger.info(f"Warmup {self.warmup_steps} batchs.") elif Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_percentage"]: warmup_percentage = Meta.config["learner_config"][ "lr_scheduler_config"]["warmup_percentage"] self.warmup_steps = int(warmup_percentage * Meta.config["learner_config"]["n_epochs"] * self.n_batches_per_epoch) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( self.optimizer, linear_warmup_func) logger.info(f"Warmup {self.warmup_steps} batchs.") else: warmup_scheduler = None self.warmup_steps = 0 self.warmup_scheduler = warmup_scheduler def _update_lr_scheduler(self, model, step): """Update the lr using lr_scheduler with each batch.""" if self.warmup_scheduler and step < self.warmup_steps: self.warmup_scheduler.step() elif self.lr_scheduler is not None: self.lr_scheduler.step() min_lr = Meta.config["learner_config"]["lr_scheduler_config"][ "min_lr"] if min_lr and self.optimizer.param_groups[0]["lr"] < min_lr: self.optimizer.param_groups[0]["lr"] = min_lr def _set_task_scheduler(self, model, dataloaders): """Set task scheduler for learning process""" # TODO: add more task scheduler support opt = Meta.config["learner_config"]["task_scheduler"] if opt == "sequential": self.task_scheduler = SequentialScheduler() elif opt == "round_robin": self.task_scheduler = RoundRobinScheduler() else: raise ValueError(f"Unrecognized task scheduler option '{opt}'") def _evaluate(self, model, dataloaders, split): if not isinstance(split, list): valid_split = [split] else: valid_split = split valid_dataloaders = [ dataloader for dataloader in dataloaders if dataloader.split in valid_split ] return model.score(valid_dataloaders) def _logging(self, model, dataloaders, batch_size): """Checking if it's time to evaluting or checkpointing""" # Switch to eval mode for evaluation model.eval() metric_dict = dict() self.logging_manager.update(batch_size) # Log the loss and lr metric_dict.update(self._aggregate_losses()) # Evaluate the model and log the metric if self.logging_manager.trigger_evaluation(): # Log task specific metric metric_dict.update( self._evaluate(model, dataloaders, Meta.config["learner_config"]["valid_split"])) self.logging_manager.write_log(metric_dict) self._reset_losses() # Checkpoint the model if self.logging_manager.trigger_checkpointing(): self.logging_manager.checkpoint_model(model, self.optimizer, self.lr_scheduler, metric_dict) self.logging_manager.write_log(metric_dict) self._reset_losses() # Switch to train mode model.train() return metric_dict def _aggregate_losses(self): """Calculate the task specific loss, average micro loss and learning rate.""" metric_dict = dict() # Log task specific loss for identifier in self.running_losses.keys(): if self.running_counts[identifier] > 0: metric_dict[identifier] = (self.running_losses[identifier] / self.running_counts[identifier]) # Calculate average micro loss total_loss = sum(self.running_losses.values()) total_count = sum(self.running_counts.values()) if total_count > 0: metric_dict["model/train/all/loss"] = total_loss / total_count # Log the learning rate metric_dict["model/train/all/lr"] = self.optimizer.param_groups[0][ "lr"] return metric_dict def _reset_losses(self): self.running_losses = defaultdict(float) self.running_counts = defaultdict(int) def learn(self, model, dataloaders): """The learning procedure of emmental MTL :param model: The emmental model that needs to learn :type model: emmental.model :param dataloaders: a list of dataloaders used to learn the model :type dataloaders: list """ # Generate the list of dataloaders for learning process train_split = Meta.config["learner_config"]["train_split"] if isinstance(train_split, str): train_split = [train_split] train_dataloaders = [ dataloader for dataloader in dataloaders if dataloader.split in train_split ] if not train_dataloaders: raise ValueError( f"Cannot find the specified train_split " f'{Meta.config["learner_config"]["train_split"]} in dataloaders.' ) # Calculate the total number of batches per epoch self.n_batches_per_epoch = sum( [len(dataloader) for dataloader in train_dataloaders]) # Set up logging manager self._set_logging_manager() # Set up optimizer self._set_optimizer(model) # Set up lr_scheduler self._set_lr_scheduler(model) # Set up task_scheduler self._set_task_scheduler(model, dataloaders) # Set to training mode model.train() logger.info(f"Start learning...") self.metrics = dict() self._reset_losses() for epoch_num in range(Meta.config["learner_config"]["n_epochs"]): batches = tqdm( enumerate(self.task_scheduler.get_batches(train_dataloaders)), total=self.n_batches_per_epoch, disable=(not Meta.config["meta_config"]["verbose"]), desc=f"Epoch {epoch_num}:", ) for batch_num, (batch, task_to_label_dict, data_name, split) in batches: X_dict, Y_dict = batch total_batch_num = epoch_num * self.n_batches_per_epoch + batch_num batch_size = len(next(iter(Y_dict.values()))) # Update lr using lr scheduler self._update_lr_scheduler(model, total_batch_num) # Set gradients of all model parameters to zero self.optimizer.zero_grad() # Perform forward pass and calcualte the loss and count loss_dict, count_dict = model.calculate_loss( X_dict, Y_dict, task_to_label_dict, data_name, split) # Update running loss and count for identifier in loss_dict.keys(): self.running_losses[identifier] += ( loss_dict[identifier].item() * count_dict[identifier]) self.running_counts[identifier] += count_dict[identifier] # Skip the backward pass if no loss is calcuated if not loss_dict: continue # Calculate the average loss loss = sum(loss_dict.values()) # Perform backward pass to calculate gradients loss.backward() # Clip gradient norm if Meta.config["learner_config"]["optimizer_config"][ "grad_clip"]: torch.nn.utils.clip_grad_norm_( model.parameters(), Meta.config["learner_config"]["optimizer_config"] ["grad_clip"], ) # Update the parameters self.optimizer.step() self.metrics.update( self._logging(model, dataloaders, batch_size)) batches.set_postfix(self.metrics) model = self.logging_manager.close(model)
class EmmentalLearner(object): """A class for emmental multi-task learning. Args: name: Name of the learner, defaults to None. """ def __init__(self, name: Optional[str] = None) -> None: """Initialize EmmentalLearner.""" self.name = name if name is not None else type(self).__name__ def _set_logging_manager(self) -> None: """Set logging manager.""" if Meta.config["learner_config"]["local_rank"] in [-1, 0]: if self.use_step_base_counter: self.logging_manager = LoggingManager(self.n_batches_per_epoch, 0, self.start_step) else: self.logging_manager = LoggingManager( self.n_batches_per_epoch, self.start_epoch, self.start_epoch * self.n_batches_per_epoch, ) def _set_optimizer(self, model: EmmentalModel) -> None: """Set optimizer for learning process. Args: model: The model to set up the optimizer. """ optimizer_config = Meta.config["learner_config"]["optimizer_config"] opt = optimizer_config["optimizer"] # If Meta.config["learner_config"]["optimizer_config"]["parameters"] is None, # create a parameter group with all parameters in the model, else load user # specified parameter groups. if optimizer_config["parameters"] is None: parameters = filter(lambda p: p.requires_grad, model.parameters()) else: parameters = optimizer_config["parameters"](model) optim_dict = { # PyTorch optimizer "asgd": optim.ASGD, "adadelta": optim.Adadelta, "adagrad": optim.Adagrad, "adam": optim.Adam, "adamw": optim.AdamW, "adamax": optim.Adamax, "lbfgs": optim.LBFGS, "rms_prop": optim.RMSprop, "r_prop": optim.Rprop, "sgd": optim.SGD, "sparse_adam": optim.SparseAdam, # Customized optimizer "bert_adam": BertAdam, } if opt in ["lbfgs", "r_prop", "sparse_adam"]: optimizer = optim_dict[opt]( parameters, lr=optimizer_config["lr"], **optimizer_config[f"{opt}_config"], ) elif opt in optim_dict.keys(): optimizer = optim_dict[opt]( parameters, lr=optimizer_config["lr"], weight_decay=optimizer_config["l2"], **optimizer_config[f"{opt}_config"], ) elif (isinstance(opt, type) and issubclass(opt, optim.Optimizer)) or ( isinstance(opt, partial) and issubclass(opt.func, optim.Optimizer) # type: ignore ): optimizer = opt(parameters) # type: ignore else: raise ValueError(f"Unrecognized optimizer option '{opt}'") self.optimizer = optimizer if Meta.config["meta_config"]["verbose"]: logger.info(f"Using optimizer {self.optimizer}") if Meta.config["learner_config"]["optimizer_path"]: try: self.optimizer.load_state_dict( torch.load( Meta.config["learner_config"]["optimizer_path"], map_location=torch.device("cpu"), )["optimizer"]) logger.info( f"Optimizer state loaded from " f"{Meta.config['learner_config']['optimizer_path']}") except BaseException: logger.error( f"Loading failed... Cannot load optimizer state from " f"{Meta.config['learner_config']['optimizer_path']}, " f"continuing anyway.") def _set_lr_scheduler(self, model: EmmentalModel) -> None: """Set learning rate scheduler for learning process. Args: model: The model to set up lr scheduler. """ # Set warmup scheduler self._set_warmup_scheduler(model) # Set lr scheduler lr_scheduler_dict = { "exponential": optim.lr_scheduler.ExponentialLR, "plateau": optim.lr_scheduler.ReduceLROnPlateau, "step": optim.lr_scheduler.StepLR, "multi_step": optim.lr_scheduler.MultiStepLR, "cyclic": optim.lr_scheduler.CyclicLR, "one_cycle": optim.lr_scheduler.OneCycleLR, # type: ignore "cosine_annealing": optim.lr_scheduler.CosineAnnealingLR, } opt = Meta.config["learner_config"]["lr_scheduler_config"][ "lr_scheduler"] lr_scheduler_config = Meta.config["learner_config"][ "lr_scheduler_config"] if opt is None: lr_scheduler = None elif opt == "linear": linear_decay_func = lambda x: (self.total_steps - self.warmup_steps - x) / (self.total_steps - self. warmup_steps) lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, linear_decay_func) elif opt in ["exponential", "step", "multi_step", "cyclic"]: lr_scheduler = lr_scheduler_dict[opt]( self.optimizer, **lr_scheduler_config[f"{opt}_config"]) elif opt == "one_cycle": lr_scheduler = lr_scheduler_dict[opt]( self.optimizer, total_steps=self.total_steps, epochs=Meta.config["learner_config"]["n_epochs"] if not self.use_step_base_counter else 1, steps_per_epoch=self.n_batches_per_epoch if not self.use_step_base_counter else self.total_steps, **lr_scheduler_config[f"{opt}_config"], ) elif opt == "cosine_annealing": lr_scheduler = lr_scheduler_dict[opt]( self.optimizer, self.total_steps, eta_min=lr_scheduler_config["min_lr"], **lr_scheduler_config[f"{opt}_config"], ) elif opt == "plateau": plateau_config = copy.deepcopy( lr_scheduler_config["plateau_config"]) del plateau_config["metric"] lr_scheduler = lr_scheduler_dict[opt]( self.optimizer, verbose=Meta.config["meta_config"]["verbose"], min_lr=lr_scheduler_config["min_lr"], **plateau_config, ) elif isinstance(opt, _LRScheduler): lr_scheduler = opt(self.optimizer) # type: ignore else: raise ValueError(f"Unrecognized lr scheduler option '{opt}'") self.lr_scheduler = lr_scheduler self.lr_scheduler_step_unit = Meta.config["learner_config"][ "lr_scheduler_config"]["lr_scheduler_step_unit"] self.lr_scheduler_step_freq = Meta.config["learner_config"][ "lr_scheduler_config"]["lr_scheduler_step_freq"] if Meta.config["meta_config"]["verbose"]: logger.info( f"Using lr_scheduler {repr(self.lr_scheduler)} with step every " f"{self.lr_scheduler_step_freq} {self.lr_scheduler_step_unit}." ) if Meta.config["learner_config"]["scheduler_path"]: try: scheduler_state = torch.load( Meta.config["learner_config"] ["scheduler_path"])["lr_scheduler"] if scheduler_state: self.lr_scheduler.load_state_dict(scheduler_state) logger.info( f"Lr scheduler state loaded from " f"{Meta.config['learner_config']['scheduler_path']}") except BaseException: logger.error( f"Loading failed... Cannot load lr scheduler state from " f"{Meta.config['learner_config']['scheduler_path']}, " f"continuing anyway.") def _set_warmup_scheduler(self, model: EmmentalModel) -> None: """Set warmup learning rate scheduler for learning process. Args: model: The model to set up warmup scheduler. """ self.warmup_steps = 0 if Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_steps"]: warmup_steps = Meta.config["learner_config"][ "lr_scheduler_config"]["warmup_steps"] if warmup_steps < 0: raise ValueError("warmup_steps must greater than 0.") warmup_unit = Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_unit"] if warmup_unit == "epoch": self.warmup_steps = int(warmup_steps * self.n_batches_per_epoch) elif warmup_unit == "batch": self.warmup_steps = int(warmup_steps) else: raise ValueError( f"warmup_unit must be 'batch' or 'epoch', but {warmup_unit} found." ) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( self.optimizer, linear_warmup_func) if Meta.config["meta_config"]["verbose"]: logger.info(f"Warmup {self.warmup_steps} batchs.") elif Meta.config["learner_config"]["lr_scheduler_config"][ "warmup_percentage"]: warmup_percentage = Meta.config["learner_config"][ "lr_scheduler_config"]["warmup_percentage"] self.warmup_steps = math.ceil(warmup_percentage * self.total_steps) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( self.optimizer, linear_warmup_func) if Meta.config["meta_config"]["verbose"]: logger.info(f"Warmup {self.warmup_steps} batchs.") else: warmup_scheduler = None self.warmup_scheduler = warmup_scheduler def _update_lr_scheduler(self, model: EmmentalModel, step: int, metric_dict: Dict[str, float]) -> None: """Update the lr using lr_scheduler with each batch. Args: model: The model to update lr scheduler. step: The current step. """ cur_lr = self.optimizer.param_groups[0]["lr"] if self.warmup_scheduler and step < self.warmup_steps: self.warmup_scheduler.step() elif self.lr_scheduler is not None: lr_step_cnt = (self.lr_scheduler_step_freq if self.lr_scheduler_step_unit == "batch" else self.lr_scheduler_step_freq * self.n_batches_per_epoch) if (step + 1) % lr_step_cnt == 0: if (Meta.config["learner_config"]["lr_scheduler_config"] ["lr_scheduler"] != "plateau"): self.lr_scheduler.step() elif (Meta.config["learner_config"]["lr_scheduler_config"] ["plateau_config"]["metric"] in metric_dict): self.lr_scheduler.step(metric_dict[ # type: ignore Meta.config["learner_config"]["lr_scheduler_config"] ["plateau_config"]["metric"]]) min_lr = Meta.config["learner_config"]["lr_scheduler_config"][ "min_lr"] if min_lr and self.optimizer.param_groups[0]["lr"] < min_lr: self.optimizer.param_groups[0]["lr"] = min_lr if (Meta.config["learner_config"]["lr_scheduler_config"]["reset_state"] and cur_lr != self.optimizer.param_groups[0]["lr"]): logger.info("Reset the state of the optimizer.") self.optimizer.state = collections.defaultdict(dict) # Reset state def _set_task_scheduler(self) -> None: """Set task scheduler for learning process.""" opt = Meta.config["learner_config"]["task_scheduler_config"][ "task_scheduler"] if opt in ["sequential", "round_robin", "mixed"]: self.task_scheduler = SCHEDULERS[opt]( # type: ignore **Meta.config["learner_config"]["task_scheduler_config"] [f"{opt}_scheduler_config"]) elif isinstance(opt, Scheduler): self.task_scheduler = opt else: raise ValueError(f"Unrecognized task scheduler option '{opt}'") def _evaluate( self, model: EmmentalModel, dataloaders: List[EmmentalDataLoader], split: Union[List[str], str], ) -> Dict[str, float]: """Evaluate the model. Args: model: The model to evaluate. dataloaders: The data to evaluate. split: The split to evaluate. Returns: The score dict. """ if not isinstance(split, list): valid_split = [split] else: valid_split = split valid_dataloaders = [ dataloader for dataloader in dataloaders if dataloader.split in valid_split ] return model.score(valid_dataloaders) def _logging( self, model: EmmentalModel, dataloaders: List[EmmentalDataLoader], batch_size: int, ) -> Dict[str, float]: """Check if it's time to evaluting or checkpointing. Args: model: The model to log. dataloaders: The data to evaluate. batch_size: Batch size. Returns: The score dict. """ # Switch to eval mode for evaluation model.eval() metric_dict = dict() self.logging_manager.update(batch_size) trigger_evaluation = self.logging_manager.trigger_evaluation() # Log the loss and lr metric_dict.update( self._aggregate_running_metrics( model, trigger_evaluation and Meta.config["learner_config"]["online_eval"], )) # Evaluate the model and log the metric if trigger_evaluation: # Log task specific metric metric_dict.update( self._evaluate(model, dataloaders, Meta.config["learner_config"]["valid_split"])) self.logging_manager.write_log(metric_dict) self._reset_losses() elif Meta.config["logging_config"]["writer_config"][ "write_loss_per_step"]: self.logging_manager.write_log(metric_dict) # Log metric dict every trigger evaluation time or full epoch if Meta.config["meta_config"]["verbose"] and ( trigger_evaluation or self.logging_manager.epoch_total == int( self.logging_manager.epoch_total)): logger.info(f"{self.logging_manager.counter_unit.capitalize()}: " f"{self.logging_manager.unit_total:.2f} {metric_dict}") # Checkpoint the model if self.logging_manager.trigger_checkpointing(): self.logging_manager.checkpoint_model(model, self.optimizer, self.lr_scheduler, metric_dict) self.logging_manager.write_log(metric_dict) self._reset_losses() # Switch to train mode model.train() return metric_dict def _aggregate_running_metrics( self, model: EmmentalModel, calc_running_scores: bool = False) -> Dict[str, float]: """Calculate the running overall and task specific metrics. Args: model: The model to evaluate. calc_running_scores: Whether to calc running scores Returns: The score dict. """ metric_dict: Dict[str, float] = dict() total_count = 0 # Log task specific loss for identifier in self.running_uids.keys(): count = len(self.running_uids[identifier]) if count > 0: metric_dict[identifier + "/loss"] = float( self.running_losses[identifier] / count) total_count += count # Calculate average micro loss if total_count > 0: total_loss = sum(self.running_losses.values()) metric_dict["model/all/train/loss"] = float(total_loss / total_count) if calc_running_scores: micro_score_dict: Dict[str, List[float]] = defaultdict(list) macro_score_dict: Dict[str, List[float]] = defaultdict(list) # Calculate training metric for identifier in self.running_uids.keys(): task_name, data_name, split = identifier.split("/") if (model.scorers[task_name] and self.running_golds[identifier] and self.running_probs[identifier]): metric_score = model.scorers[task_name].score( self.running_golds[identifier], self.running_probs[identifier], prob_to_pred(self.running_probs[identifier]), self.running_uids[identifier], ) for metric_name, metric_value in metric_score.items(): metric_dict[ f"{identifier}/{metric_name}"] = metric_value # Collect average score identifier = construct_identifier(task_name, data_name, split, "average") metric_dict[identifier] = np.mean( list(metric_score.values())) micro_score_dict[split].extend( list(metric_score.values()) # type: ignore ) macro_score_dict[split].append(metric_dict[identifier]) # Collect split-wise micro/macro average score for split in micro_score_dict.keys(): identifier = construct_identifier("model", "all", split, "micro_average") metric_dict[identifier] = np.mean( micro_score_dict[split] # type: ignore ) identifier = construct_identifier("model", "all", split, "macro_average") metric_dict[identifier] = np.mean( macro_score_dict[split] # type: ignore ) # Log the learning rate metric_dict["model/all/train/lr"] = self.optimizer.param_groups[0][ "lr"] return metric_dict def _set_learning_counter(self) -> None: if Meta.config["learner_config"]["n_steps"]: if Meta.config["learner_config"]["skip_learned_data"]: self.start_epoch = 0 self.start_step = 0 self.start_train_epoch = 0 self.start_train_step = Meta.config["learner_config"][ "steps_learned"] else: self.start_epoch = 0 self.start_step = Meta.config["learner_config"][ "steps_learned"] self.start_train_epoch = 0 self.start_train_step = Meta.config["learner_config"][ "steps_learned"] self.end_epoch = 1 self.end_step = Meta.config["learner_config"]["n_steps"] self.use_step_base_counter = True self.total_steps = Meta.config["learner_config"]["n_steps"] else: if Meta.config["learner_config"]["skip_learned_data"]: self.start_epoch = 0 self.start_step = 0 self.start_train_epoch = Meta.config["learner_config"][ "epochs_learned"] self.start_train_step = Meta.config["learner_config"][ "steps_learned"] else: self.start_epoch = Meta.config["learner_config"][ "epochs_learned"] self.start_step = Meta.config["learner_config"][ "steps_learned"] self.start_train_epoch = Meta.config["learner_config"][ "epochs_learned"] self.start_train_step = Meta.config["learner_config"][ "steps_learned"] self.end_epoch = Meta.config["learner_config"]["n_epochs"] self.end_step = self.n_batches_per_epoch self.use_step_base_counter = False self.total_steps = (Meta.config["learner_config"]["n_epochs"] * self.n_batches_per_epoch) def _reset_losses(self) -> None: """Reset running logs.""" self.running_uids: Dict[str, List[str]] = defaultdict(list) self.running_losses: Dict[str, ndarray] = defaultdict(float) # type: ignore self.running_probs: Dict[str, List[ndarray]] = defaultdict(list) self.running_golds: Dict[str, List[ndarray]] = defaultdict(list) def learn(self, model: EmmentalModel, dataloaders: List[EmmentalDataLoader]) -> None: """Learning procedure of emmental MTL. Args: model: The emmental model that needs to learn. dataloaders: A list of dataloaders used to learn the model. """ start_time = time.time() # Generate the list of dataloaders for learning process train_split = Meta.config["learner_config"]["train_split"] if isinstance(train_split, str): train_split = [train_split] train_dataloaders = [ dataloader for dataloader in dataloaders if dataloader.split in train_split ] if not train_dataloaders: raise ValueError( f"Cannot find the specified train_split " f'{Meta.config["learner_config"]["train_split"]} in dataloaders.' ) # Set up task_scheduler self._set_task_scheduler() # Calculate the total number of batches per epoch self.n_batches_per_epoch: int = self.task_scheduler.get_num_batches( train_dataloaders) if self.n_batches_per_epoch == 0: logger.info("No batches in training dataloaders, existing...") return # Set up learning counter self._set_learning_counter() # Set up logging manager self._set_logging_manager() # Set up wandb watch model if (Meta.config["logging_config"]["writer_config"]["writer"] == "wandb" and Meta.config["logging_config"]["writer_config"] ["wandb_watch_model"]): if Meta.config["logging_config"]["writer_config"][ "wandb_model_watch_freq"]: wandb.watch( model, log_freq=Meta.config["logging_config"]["writer_config"] ["wandb_model_watch_freq"], ) else: wandb.watch(model) # Set up optimizer self._set_optimizer(model) # Set up lr_scheduler self._set_lr_scheduler(model) if Meta.config["learner_config"]["fp16"]: try: from apex import amp # type: ignore except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to " "use fp16 training.") logger.info( f"Modeling training with 16-bit (mixed) precision " f"and {Meta.config['learner_config']['fp16_opt_level']} opt level." ) model, self.optimizer = amp.initialize( model, self.optimizer, opt_level=Meta.config["learner_config"]["fp16_opt_level"], ) # Multi-gpu training (after apex fp16 initialization) if (Meta.config["learner_config"]["local_rank"] == -1 and Meta.config["model_config"]["dataparallel"]): model._to_dataparallel() # Distributed training (after apex fp16 initialization) if Meta.config["learner_config"]["local_rank"] != -1: model._to_distributed_dataparallel() # Set to training mode model.train() if Meta.config["meta_config"]["verbose"]: logger.info("Start learning...") self.metrics: Dict[str, float] = dict() self._reset_losses() # Set gradients of all model parameters to zero self.optimizer.zero_grad() batch_iterator = self.task_scheduler.get_batches( train_dataloaders, model) for epoch_num in range(self.start_epoch, self.end_epoch): for train_dataloader in train_dataloaders: # Set epoch for distributed sampler if isinstance(train_dataloader, DataLoader) and isinstance( train_dataloader.sampler, DistributedSampler): train_dataloader.sampler.set_epoch(epoch_num) step_pbar = tqdm( range(self.start_step, self.end_step), desc=f"Step {self.start_step + 1}/{self.end_step}" if self.use_step_base_counter else f"Epoch {epoch_num + 1}/{self.end_epoch}", disable=not Meta.config["meta_config"]["verbose"] or Meta.config["learner_config"]["local_rank"] not in [-1, 0], ) for step_num in step_pbar: if self.use_step_base_counter: step_pbar.set_description( f"Step {step_num + 1}/{self.total_steps}") step_pbar.refresh() try: batch = next(batch_iterator) except StopIteration: batch_iterator = self.task_scheduler.get_batches( train_dataloaders, model) batch = next(batch_iterator) # Check if skip the current batch if epoch_num < self.start_train_epoch or ( epoch_num == self.start_train_epoch and step_num < self.start_train_step): continue # Covert single batch into a batch list if not isinstance(batch, list): batch = [batch] total_step_num = epoch_num * self.n_batches_per_epoch + step_num batch_size = 0 for _batch in batch: batch_size += len(_batch.uids) # Perform forward pass and calcualte the loss and count uid_dict, loss_dict, prob_dict, gold_dict = model( _batch.uids, _batch.X_dict, _batch.Y_dict, _batch.task_to_label_dict, return_probs=Meta.config["learner_config"] ["online_eval"], return_action_outputs=False, ) # Update running loss and count for task_name in uid_dict.keys(): identifier = f"{task_name}/{_batch.data_name}/{_batch.split}" self.running_uids[identifier].extend( uid_dict[task_name]) self.running_losses[identifier] += ( loss_dict[task_name].item() * len(uid_dict[task_name]) if len(loss_dict[task_name].size()) == 0 else torch.sum(loss_dict[task_name]).item() ) * model.task_weights[task_name] if (Meta.config["learner_config"]["online_eval"] and prob_dict and gold_dict): self.running_probs[identifier].extend( prob_dict[task_name]) self.running_golds[identifier].extend( gold_dict[task_name]) # Calculate the average loss loss = sum([ model.task_weights[task_name] * task_loss if len(task_loss.size()) == 0 else torch.mean(model.task_weights[task_name] * task_loss) for task_name, task_loss in loss_dict.items() ]) # Perform backward pass to calculate gradients if Meta.config["learner_config"]["fp16"]: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # type: ignore if (total_step_num + 1) % Meta.config["learner_config"]["optimizer_config"][ "gradient_accumulation_steps"] == 0 or ( step_num + 1 == self.end_step and epoch_num + 1 == self.end_epoch): # Clip gradient norm if Meta.config["learner_config"]["optimizer_config"][ "grad_clip"]: if Meta.config["learner_config"]["fp16"]: torch.nn.utils.clip_grad_norm_( amp.master_params(self.optimizer), Meta.config["learner_config"] ["optimizer_config"]["grad_clip"], ) else: torch.nn.utils.clip_grad_norm_( model.parameters(), Meta.config["learner_config"] ["optimizer_config"]["grad_clip"], ) # Update the parameters self.optimizer.step() # Set gradients of all model parameters to zero self.optimizer.zero_grad() if Meta.config["learner_config"]["local_rank"] in [-1, 0]: self.metrics.update( self._logging(model, dataloaders, batch_size)) step_pbar.set_postfix(self.metrics) # Update lr using lr scheduler self._update_lr_scheduler(model, total_step_num, self.metrics) step_pbar.close() if Meta.config["learner_config"]["local_rank"] in [-1, 0]: model = self.logging_manager.close(model) logger.info( f"Total learning time: {time.time() - start_time} seconds.")
def _set_logging_manager(self) -> None: """Set logging manager.""" if Meta.config["learner_config"]["local_rank"] in [-1, 0]: self.logging_manager = LoggingManager(self.n_batches_per_epoch)