def test_fbeta(caplog): """Unit test of fbeta_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = fbeta_scorer(golds, None, preds, pos_label=1, beta=2) assert isequal(metric_dict, {"f2": 0.3846153846153846}) metric_dict = fbeta_scorer(golds, None, preds, pos_label=0, beta=2) assert isequal(metric_dict, {"f2": 0.8823529411764706})
def test_fbeta(caplog): """Unit test of fbeta_scorer.""" caplog.set_level(logging.INFO) metric_dict = fbeta_scorer(GOLDS, PROBS, PREDS, pos_label=1, beta=2) assert isequal(metric_dict, {"f2": 0.3846153846153846}) metric_dict = fbeta_scorer(GOLDS, None, PREDS, pos_label=1, beta=2) assert isequal(metric_dict, {"f2": 0.3846153846153846}) metric_dict = fbeta_scorer(GOLDS, None, PREDS, pos_label=0, beta=2) assert isequal(metric_dict, {"f2": 0.8823529411764706}) metric_dict = fbeta_scorer(PROB_GOLDS, PROBS, PREDS, pos_label=1, beta=2) assert isequal(metric_dict, {"f2": 0.3846153846153846}) metric_dict = fbeta_scorer(PROB_GOLDS, None, PREDS, pos_label=1, beta=2) assert isequal(metric_dict, {"f2": 0.3846153846153846}) metric_dict = fbeta_scorer(PROB_GOLDS, None, PREDS, pos_label=0, beta=2) assert isequal(metric_dict, {"f2": 0.8823529411764706})